Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanobiotechnology-based strategies for enhanced crop stress resilience

Abstract

Nanobiotechnology approaches to engineering crops with enhanced stress tolerance may be a safe and sustainable strategy to increase crop yield. Under stress conditions, cellular redox homeostasis is disturbed, resulting in the over-accumulation of reactive oxygen species (ROS) that damage biomolecules (lipids, proteins and DNA) and inhibit crop growth and yield. Delivering ROS-scavenging nanomaterials to plants has been shown to alleviate abiotic stress. Here we review the current state of knowledge of using ROS-scavenging nanomaterials to enhance plant stress tolerance. When present below a threshold level, ROS can mediate redox signalling and defence pathways that foster plant acclimatization against stress. We find that ROS-triggering nanomaterials, such as nanoparticulate silver and copper oxide, have the potential to be judiciously applied to crop species to stimulate the defence system, prime stress responses and subsequently increase the stress resistance of crops.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of strategies of utilizing ROS-scavenging and ROS-triggering NMs to modulate ROS homeostasis for stress tolerance enhancement of plants.
Fig. 2: Schematic diagram explaining ROS generation and functions in plant cells.
Fig. 3: Scheme showing the mechanisms of using ROS-scavenging NMs to alleviate plant abiotic stress.
Fig. 4: Scheme showing the mechanisms of using ROS-triggering NMs to enhance resistance of plants to abiotic stresses.
Fig. 5: Schematic diagram of uptake pathways of ROS-modulating NMs in plants.

Similar content being viewed by others

References

  1. Lata, R., Chowdhury, S., Gond, S. K. & White, J. F. Jr. Induction of abiotic stress tolerance in plants by endophytic microbes. Lett. Appl. Microbiol. 66, 268–276 (2018).

    CAS  PubMed  Google Scholar 

  2. Acevedo, M. et al. A scoping review of adoption of climate-resilient crops by small-scale producers in low- and middle-income countries. Nat. Plants 6, 1231–1241 (2020).

    PubMed  PubMed Central  Google Scholar 

  3. Choudhury, F. K., Rivero, R. M., Blumwald, E. & Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 90, 856–867 (2017).

    CAS  PubMed  Google Scholar 

  4. Kundu, P. et al. in Advancement in Crop Improvement Techniques (eds Tuteja, N. et al.) 241–262 (Woodhead, 2020).

  5. Wu, J. et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48, 1004–1076 (2019).

    CAS  PubMed  Google Scholar 

  6. Korsvik, C., Patil, S., Seal, S. & Self, W.T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 1056–1058 (2007).

  7. Giraldo, J. P. et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13, 400–408 (2014).

    ADS  CAS  PubMed  Google Scholar 

  8. Mittler, R., Zandalinas, S. I., Fichman, Y. & Van Breusegem, F. Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-022-00499-2 (2022).

  9. Castro, B. et al. Stress-induced reactive oxygen species compartmentalization, perception and signalling. Nat. Plants 7, 403–412 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ray, P. D., Huang, B.-W. & Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24, 981–990 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Corpas, F. J., Gupta, D. K. & Palma, J. M. in Reactive Oxygen Species and Oxidative Damage in Plants Under Stress (eds Gupta, D. K. et al.) 1–22 (Springer, 2015).

  12. Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M. & Hasanuzzaman, M. Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants 10, 277 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hasanuzzaman, M. et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9, 681 (2020).

    CAS  PubMed Central  Google Scholar 

  14. Mhamdi, A. & Van Breusegem, F. Reactive oxygen species in plant development. Development 145, dev164376 (2018).

    PubMed  Google Scholar 

  15. You, J. & Chan, Z. ROS regulation during abiotic stress responses in crop plants. Front. Plant Sci. 6, 1092 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Tripathy, B. C. & Oelmüller, R. Reactive oxygen species generation and signaling in plants. Plant Signal. Behav. 7, 1621–1633 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chapman, J. M., Muhlemann, J. K., Gayomba, S. R. & Muday, G. K. RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses. Chem. Res. Toxicol. 32, 370–396 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, H., Tito, N. & Giraldo, J. P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano 11, 11283–11297 (2017).

    CAS  PubMed  Google Scholar 

  19. Wu, H., Shabala, L., Shabala, S. & Giraldo, J. P. Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. Environ. Sci. Nano 5, 1567–1583 (2018).

    CAS  Google Scholar 

  20. Djanaguiraman, M., Nair, R., Giraldo, J. P. & Prasad, P. V. V. Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield. ACS Omega 3, 14406–14416 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, Y. et al. Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: reactive oxygen species homeostasis and rhizobacteria regulation. Environ. Pollut. 299, 118900 (2022).

    CAS  PubMed  Google Scholar 

  22. Liu, J. et al. Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K(+)/Na(+) ratio. J. Nanobiotechnol. 19, 153–153 (2021).

    ADS  CAS  Google Scholar 

  23. Gohari, G. et al. Protective effects of cerium oxide nanoparticles in grapevine (Vitis vinifera L.) cv. flame seedless under salt stress conditions. Ecotoxicol. Environ. Saf. 220, 112402 (2021).

    CAS  PubMed  Google Scholar 

  24. Mohammadi, M. H. Z. et al. Cerium oxide nanoparticles (CeO2-NPs) improve growth parameters and antioxidant defense system in Moldavian balm (Dracocephalum moldavica L.) under salinity stress. Plant Stress 1, 100006 (2021).

    CAS  Google Scholar 

  25. Wong, E. L. S., Vuong, K. Q. & Chow, E. Nanozymes for environmental pollutant monitoring and remediation. Sensors 21, 408 (2021).

    ADS  CAS  PubMed Central  Google Scholar 

  26. Yao, J. et al. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 9, 2927–2933 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lu, L. et al. Mn3O4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. Environ. Sci. Nano 7, 1692–1703 (2020).

    CAS  Google Scholar 

  28. Zhang, Y. et al. Star polymers with designed reactive oxygen species scavenging and agent delivery functionality promote plant stress tolerance. ACS Nano 16, 4467–4478 (2022).

  29. Wang, Y. et al. Alleviation of nitrogen stress in rice (Oryza sativa) by ceria nanoparticles. Environ. Sci. Nano 7, 2930–2940 (2020).

    CAS  Google Scholar 

  30. Chen, Z. et al. Graphene enhances photosynthesis and the antioxidative defense system and alleviates salinity and alkalinity stresses in alfalfa (Medicago sativa L.) by regulating gene expression. Environ. Sci. Nano 8, 2731–2748 (2021).

    CAS  Google Scholar 

  31. Zhou, H. et al. Molecular basis of cerium oxide nanoparticle enhancement of rice salt tolerance and yield. Environ. Sci. Nano 8, 3294–3311 (2021).

    CAS  Google Scholar 

  32. An, J. et al. Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environ. Sci. Nano 7, 2214–2228 (2020).

    CAS  Google Scholar 

  33. Khan, M. N. et al. Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities. J. Nanobiotechnol. 19, 276 (2021).

    CAS  Google Scholar 

  34. Suzuki, N. et al. Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. Plant Cell 25, 3553–3569 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Avramova, Z. Transcriptional ‘memory’ of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. Plant J. 83, 149–159 (2015).

    CAS  PubMed  Google Scholar 

  36. Bruce, T. J. A., Matthes, M. C., Napier, J. A. & Pickett, J. A. Stressful ‘memories’ of plants: evidence and possible mechanisms. Plant Sci. 173, 603–608 (2007).

    CAS  Google Scholar 

  37. Nair, A. U., Bhukya, D. P. N., Sunkar, R., Chavali, S. & Allu, A. D. Molecular basis of priming-induced acquired tolerance to multiple abiotic stresses in plants. J. Exp. Bot. 73, 3355–3371 (2022).

    CAS  PubMed  Google Scholar 

  38. He, W., Zhou, Y. T., Wamer, W. G., Boudreau, M. D. & Yin, J. J. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 33, 7547–7555 (2012).

    CAS  PubMed  Google Scholar 

  39. Foldbjerg, R., Dang, D. A. & Autrup, H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch. Toxicol. 85, 743–750 (2011).

    CAS  PubMed  Google Scholar 

  40. Khan, I. et al. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): the oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol. Biochem. 156, 221–232 (2020).

    CAS  PubMed  Google Scholar 

  41. Li, Y. et al. Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Arch. Toxicol. 91, 509–519 (2017).

    CAS  PubMed  Google Scholar 

  42. Yan, X. et al. Rice exposure to silver nanoparticles in a life cycle study: effect of dose responses on grain metabolomic profile, yield, and soil bacteria. Environ. Sci. Nano 9, 2195–2206 (2022).

    CAS  Google Scholar 

  43. Paparella, S. et al. Seed priming: state of the art and new perspectives. Plant Cell Rep. 34, 1281–1293 (2015).

    CAS  PubMed  Google Scholar 

  44. Zhou, X. et al. AgNPs seed priming accelerated germination speed and altered nutritional profile of Chinese cabbage. Sci. Total Environ. 808, 151896 (2022).

    ADS  CAS  PubMed  Google Scholar 

  45. Acharya, P., Jayaprakasha, G. K., Crosby, K. M., Jifon, J. L. & Patil, B. S. Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Sci Rep. 10, 5037 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guha, T., Das, H., Mukherjee, A. & Kundu, R. Elucidating ROS signaling networks and physiological changes involved in nanoscale zero valent iron primed rice seed germination sensu stricto. Free Radic. Biol. Med. 171, 11–25 (2021).

    CAS  PubMed  Google Scholar 

  47. Saleem, M., Fariduddin, Q. & Castroverde, C. D. M. Salicylic acid: a key regulator of redox signalling and plant immunity. Plant Physiol. Biochem. 168, 381–397 (2021).

    CAS  PubMed  Google Scholar 

  48. El-Shetehy, M. et al. Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nat. Nanotechnol. 16, 344–353 (2021).

    ADS  CAS  PubMed  Google Scholar 

  49. Ma, C. et al. Advanced material modulation of nutritional and phytohormone status alleviates damage from soybean sudden death syndrome. Nat. Nanotechnol. 15, 1033–1042 (2020).

    ADS  CAS  PubMed  Google Scholar 

  50. Zhao, L. et al. Activation of antioxidant and detoxification gene expression in cucumber plants exposed to a Cu(OH)2 nanopesticide. Environ. Sci. Nano 4, 1750–1760 (2017).

    CAS  Google Scholar 

  51. Avellan, A. et al. Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 13, 5291–5305 (2019).

    CAS  PubMed  Google Scholar 

  52. Shen, Y. et al. Role of foliar biointerface properties and nanomaterial chemistry in controlling Cu transfer into wild-type and mutant Arabidopsis thaliana leaf tissue. J. Agric. Food Chem. 70, 4267–4278 (2022).

    CAS  PubMed  Google Scholar 

  53. Hong, J. et al. Foliar application of nanoparticles: mechanisms of absorption, transfer, and multiple impacts. Environ. Sci. Nano 8, 1196–1210 (2021).

    CAS  Google Scholar 

  54. Su, Y. et al. Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. Environ. Sci. Nano 6, 2311–2331 (2019).

    CAS  Google Scholar 

  55. Wu, H. & Li, Z. Nano-enabled agriculture: how do nanoparticles cross barriers in plants? Plant Commun. https://doi.org/10.1016/j.xplc.2022.100346 (2022).

  56. Chen, L. et al. CeO2 nanoparticles improved cucumber salt tolerance is associated with its induced early stimulation on antioxidant system. Chemosphere 299, 134474 (2022).

    ADS  CAS  PubMed  Google Scholar 

  57. Lv, J., Christie, P. & Zhang, S. Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ. Sci. Nano 6, 41–59 (2018).

    Google Scholar 

  58. Amritha, M. S., Sridharan, K., Puthur, J. T. & Dhankher, O. P. Priming with nanoscale materials for boosting abiotic stress tolerance in crop plants. J. Agric. Food Chem. 69, 10017–10035 (2021).

    Google Scholar 

  59. Elhaj Baddar, Z. & Unrine, J. M. Effects of soil pH and coatings on the efficacy of polymer coated ZnO nanoparticulate fertilizers in wheat (Triticum aestivum). Environ. Sci. Technol. 55, 13532–13540 (2021).

    ADS  CAS  PubMed  Google Scholar 

  60. Kasote, D. M., Lee, J. H. J., Jayaprakasha, G. K. & Patil, B. S. Seed priming with iron oxide nanoparticles modulate antioxidant potential and defense-linked hormones in watermelon seedlings. ACS Sustain. Chem. Eng. 7, 5142–5151 (2019).

    CAS  Google Scholar 

  61. Naseer, M. et al. Nano-enabled improvements of growth and colonization rate in wheat inoculated with arbuscular mycorrhizal fungi. Environ. Pollut. 295, 118724 (2022).

    CAS  PubMed  Google Scholar 

  62. Mickelbart, M. V., Hasegawa, P. M. & Bailey-Serres, J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat. Rev. Genet. 16, 237–251 (2015).

    CAS  PubMed  Google Scholar 

  63. Ma, W. et al. Citrus Huanglongbing is a pathogen-triggered immune disease that can be mitigated with antioxidants and gibberellin. Nat. Commun. 13, 529 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, D. et al. Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD. Nat. Commun. 11, 1838 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu, D. et al. Engineering Fe–N doped graphene to mimic biological functions of NADPH oxidase in cells. J. Am. Chem. Soc. 142, 19602–19610 (2020).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.Z. acknowledges grants from the National Science Foundation of China (21876081 and 21906081).

Author information

Authors and Affiliations

Authors

Contributions

L.Z. and J.C.W. discussed and wrote the review; T.B. assisted in reference collection and designed the figures; and H.W., J.L.G.-T. and A.K. helped with the critical review and editing.

Corresponding authors

Correspondence to Lijuan Zhao or Jason C. White.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Honghong Wu, Om Parkash Dhankher and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Bai, T., Wei, H. et al. Nanobiotechnology-based strategies for enhanced crop stress resilience. Nat Food 3, 829–836 (2022). https://doi.org/10.1038/s43016-022-00596-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-022-00596-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research