Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fish community structure and dynamics are insufficient to mediate coral resilience

Abstract

Coral reefs are being impacted by myriad stressors leading to drastic changes to their structure and function. Fishes play essential roles in driving ecosystem processes on coral reefs but the extent to which these processes are emergent at temporal or ecosystem scales or otherwise masked by other drivers (for example, climatic events and crown-of-thorns starfish outbreaks) is poorly understood. Using time series data on fish community composition and coral and macroalgae percentage cover between 2006 and 2017 from 57 sites around Mo’orea, Polynesia, we found that fish community diversity predicts temporal stability in fish biomass but did not translate to temporal stability of coral cover. Furthermore, we found limited evidence of directional influence of fish on coral dynamics at temporal and ecosystem scales and no evidence that fish mediate coral recovery rate from disturbance. Our findings suggest that coral reef fisheries management will benefit from maintaining fish diversity but that this level of management is unlikely to strongly mediate coral loss or recovery over time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Variability across space and time in coral reef benthic cover and fish biomass from Mo’orea, French Polynesia.
Fig. 2: Diversity stabilizes fish community biomass, not coral or macroalgae cover.
Fig. 3: Weak evidence of temporal regulation of coral or macroalgae cover by attributes of the fish community.
Fig. 4: Coral reef fish community attributes do not influence return rate in coral cover from disturbance.

Similar content being viewed by others

Data availability

All data to support the analyses and conclusions of this study are available online at https://github.com/timothycline/CoralFishStability.

Code availability

All computer code to support the analyses and conclusions of this study are available online at https://github.com/timothycline/CoralFishStability.

References

  1. Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Hatcher, B. G. Coral reef primary productivity: a beggar’s banquet. Trends Ecol. Evol. 3, 106–111 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Hatcher, B. G. Coral reef primary productivity. A hierarchy of pattern and process. Trends Ecol. Evol. 5, 149–155 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Lewis, S. M. The role of herbivorous fishes in the organization of a Caribbean reef community. Ecol. Monogr. 56, 183–200 (1986).

    Article  Google Scholar 

  5. Carpenter, R. C. Partitioning herbivory and its effects on coral reef algal communities. Ecol. Monogr. 56, 345–364 (1986).

    Article  Google Scholar 

  6. McCook, L. J. Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef. Coral Reefs 18, 357–367 (1999).

    Article  Google Scholar 

  7. Meyer, J. L., Schultz, E. T. & Helfman, G. S. Fish schools: an asset to corals. Science 220, 1047–1049 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Allgeier, J. E., Layman, C. A., Mumby, P. J. & Rosemond, A. D. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems. Glob. Change Biol. 20, 2459–2472 (2014).

    Article  Google Scholar 

  9. Shantz, A. A., Ladd, M. C., Schrack, E. & Burkepile, D. E. Fish-derived nutrient hotspots shape coral reef benthic communities. Ecol. Appl. 25, 2142–2152 (2015).

    Article  PubMed  Google Scholar 

  10. Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).

    Article  Google Scholar 

  11. Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Hughes, T. P. et al. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 17, 360–365 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Graham, N. A. J. et al. Managing resilience to reverse phase shifts in coral reefs. Front. Ecol. Environ. 11, 541–548 (2013).

    Article  Google Scholar 

  16. Holbrook, S. J., Schmitt, R. J., Adam, T. C. & Brooks, A. J. Coral reef resilience, tipping points and the strength of herbivory. Sci. Rep. 6, 35817 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).

    Article  Google Scholar 

  19. Mumby, P. J. et al. Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311, 98–101 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Green, A. L. & Bellwood, D. R. Monitoring Functional Groups of Herbivorous Reef Fishes as Indicators of Coral Reef Resilience. A Practical Guide for Coral reef Managers in the Asia Pacific Region (IUCN, 2009).

  21. Bozec, Y. M., O’Farrell, S., Bruggemann, J. H., Luckhurst, B. E. & Mumby, P. J. Tradeoffs between fisheries harvest and the resilience of coral reefs. Proc. Natl Acad. Sci. USA 113, 4536–4541 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bruno, J. F., Cote, I. M. & Toth, L. T. Climate change, coral loss, and the curious case of the parrotfish paradigm: why don’t marine protected sreas improve reef resilience? Ann. Rev. Mar. Sci. 11, 307–334 (2019).

    Article  PubMed  Google Scholar 

  23. Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).

    Article  Google Scholar 

  24. Mora, C. A clear human footprint in the coral reefs of the Caribbean. Proc. Biol. Sci. 275, 767–773 (2008).

    PubMed  PubMed Central  Google Scholar 

  25. Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Allgeier, J. E., Layman, C. A., Mumby, P. J. & Rosemond, A. D. Biogeochemical implications of biodiversity and community structure across multiple coastal ecosystems. Ecol. Monogr. 85, 117–132 (2015).

    Article  Google Scholar 

  27. Mellin, C., Bradshaw, C. J., Fordham, D. A. & Caley, M. J. Strong but opposing beta-diversity–stability relationships in coral reef fish communities. Proc. Biol. Sci. 281, 20131993 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nash, K. L. et al. Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. J. Appl. Ecol. 53, 646–655 (2016).

    Article  Google Scholar 

  29. Thibaut, L. M., Connolly, S. R. & Sweatman, H. P. Diversity and stability of herbivorous fishes on coral reefs. Ecology 93, 891–901 (2012).

    Article  PubMed  Google Scholar 

  30. Zhang, S. Y. et al. Is coral richness related to community resistance to and recovery from disturbance? PeerJ 2, e308 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Clements, C. S. & Hay, M. E. Biodiversity enhances coral growth, tissue survivorship and suppression of macroalgae. Nat. Ecol. Evol. 3, 178–182 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bellwood, D. R., Hoey, A. S., Ackerman, J. L. & Depczynski, M. Coral bleaching, reef fish community phase shifts and the resilience of coral reefs. Glob. Change Biol. 12, 1587–1594 (2006).

    Article  Google Scholar 

  33. Burkepile, D. E. & Hay, M. E. Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proc. Natl Acad. Sci. USA 105, 16201–16206 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mumby, P. J. Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. Coral Reefs 28, 761–773 (2009).

    Article  Google Scholar 

  35. Cheal, A. J., Emslie, M., MacNeil, M. A., Miller, I. & Sweatman, H. Spatial variation in the functional characteristics of herbivorous fish communities and the resilience of coral reefs. Ecol. Appl. 23, 174–188 (2013).

    Article  PubMed  Google Scholar 

  36. Cheal, A. J. et al. Coral–macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs 29, 1005–1015 (2010).

    Article  Google Scholar 

  37. Bellwood, D. R., Hughes, T. P., Folke, C. & Nystrom, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl Acad. Sci. USA 111, 13757–13762 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Graham, N. A., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Steneck, R. S., Mumby, P. J., Macdonald, C., Rasher, D. B. & Stoyle, G. Attenuating effects of ecosystem management on coral reefs. Sci. Adv. 4, eaao5493 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Williams, I. D., Polunin, N. V. C. & Hendrick, V. J. Limits to grazing by herbivorous fishes and the impact of low coral cover on macroalgal abundance on a coral reef in Belize. Mar. Ecol. Prog. Ser. 222, 187–196 (2001).

    Article  Google Scholar 

  42. Harvey, C. J. et al. The importance of long-term ecological time series for integrated ecosystem assessment and ecosystem-based management. Prog. Oceanogr. 188, 102418 (2020).

    Article  Google Scholar 

  43. Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183–190 (2019).

    Article  PubMed  Google Scholar 

  44. MacNeil, M. A. et al. Water quality mediates resilience on the Great Barrier Reef. Nat. Ecol. Evol. 3, 620–627 (2019).

    Article  PubMed  Google Scholar 

  45. Kayal, M. et al. Predator crown-of-thorns starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities. PLoS ONE 7, e47363 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Adjeroud, M. et al. Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef. Coral Reefs 28, 775–780 (2009).

    Article  Google Scholar 

  47. Adam, T. C. et al. How will coral reef fish communities respond to climate-driven disturbances? Insight from landscape-scale perturbations. Oecologia 176, 285–296 (2014).

    Article  PubMed  Google Scholar 

  48. Munsterman, K. S., Allgeier, J. E., Peters, J. R. & Burkepile, D. E. A view from both ends: shifts in herbivore assemblages impact top-down and bottom-up processes on coral reefs. Ecosystems 24, 1702–1715 (2021).

    Article  Google Scholar 

  49. Newman, M. J., Paredes, G. A., Sala, E. & Jackson, J. B. Structure of Caribbean coral reef communities across a large gradient of fish biomass. Ecol. Lett. 9, 1216–1227 (2006).

    Article  PubMed  Google Scholar 

  50. McClanahan, T. R. et al. Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. Proc. Natl Acad. Sci. USA 108, 17230–17233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Suchley, A., McField, M. D. & Alvarez-Filip, L. Rapidly increasing macroalgal cover not related to herbivorous fishes on Mesoamerican reefs. PeerJ 4, e2084 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rogers, A., Blanchard, J. L. & Mumby, P. J. Vulnerability of coral reef fisheries to a loss of structural complexity. Curr. Biol. 24, 1000–1005 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Hempson, T. N., Graham, N. A. J., MacNeil, M. A., Hoey, A. S. & Wilson, S. K. Ecosystem regime shifts disrupt trophic structure. Ecol. Appl 28, 191–200 (2018).

    Article  PubMed  Google Scholar 

  54. Mouillot, D. et al. Global marine protected areas do not secure the evolutionary history of tropical corals and fishes. Nat. Commun. 7, 10359 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Han, X., Adam, T. C., Schmitt, R. J., Brooks, A. J. & Holbrook, S. J. Response of herbivore functional groups to sequential perturbations in Moorea, French Polynesia. Coral Reefs 35, 999–1009 (2016).

    Article  Google Scholar 

  56. Donovan, M. K. et al. Nitrogen pollution interacts with heat stress to increase coral bleaching across the seascape. Proc. Natl Acad. Sci. USA 117, 5351–5357 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Holbrook, S. J. et al. Recruitment drives spatial variation in recovery rates of resilient coral reefs. Sci. Rep. 8, 7338 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Doropoulos, C. et al. Characterising the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecol. Monogr. 86, 20–44 (2016).

    Article  Google Scholar 

  59. Russ, G. R., Questel, S. A., Rizzari, J. R. & Alcala, A. C. The parrotfish–coral relationship: refuting the ubiquity of a prevailing paradigm. Mar. Biol. 162, 2029–2045 (2015).

    Article  Google Scholar 

  60. Chung, A. E. et al. Building coral reef resilience through spatial herbivore management. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00098 (2019).

  61. Kelly, E. L. A. et al. A budget of algal production and consumption by herbivorous fish in an herbivore fisheries management area, Maui, Hawaii. Ecosphere 8, e01899 (2017).

    Article  Google Scholar 

  62. Edwards, A. J. Reef Rehabilitation Manual (Coral Reef Targeted Research & Capacity Building for Management Program, 2010).

  63. Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Sale, P. F. et al. Transforming management of tropical coastal seas to cope with challenges of the 21st century. Mar. Pollut. Bull. 85, 8–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Schindler, D. E. & Hilborn, R. Sustainability. Prediction, precaution, and policy under global change. Science 347, 953–954 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Mumby, P. J. et al. Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427, 533–536 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Walsworth, T. E. et al. Management for network diversity speeds evolutionary adaptation to climate change. Nat. Clim. Change 9, 632–636 (2019).

    Article  Google Scholar 

  68. Cote, I. M. & Darling, E. S. Rethinking ecosystem resilience in the face of climate change. PLoS Biol. 8, e1000438 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Darling, E. S. & Cote, I. M. Seeking resilience in marine ecosystems. Science 359, 986–987 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Rassweiler, A. et al. Perceptions and responses of Pacific Island fishers to changing coral reefs. Ambio 49, 130–143 (2020).

    Article  PubMed  Google Scholar 

  71. Moorea Coral Reef LTER & Carpenter, R. MCR LTER: Coral Reef: Long-term Population and Community Dynamics: Benthic Algae and Other Community Components (Environmental Data Initiative, accessed 2019); https://doi.org/10.6073/pasta/37d9c451a908e4a6f8e7ab914b93f44f

  72. Brooks, A. MCR LTER: Coral Reef: Long-term Population and Community Dynamics: Fishes (MCR, 2018).

  73. de Loma, T. L. et al. A framework for assessing impacts of marine protected areas in Moorea (French Polynesia). Pac. Sci. 62, 431–441 (2008).

    Article  Google Scholar 

  74. Nicholson, M. D. & Jennings, S. Testing candidate indicators to support ecosystem-based management: the power of monitoring surveys to detect temporal trends in fish community metrics. ICES J. Mar. Sci. 61, 35–42 (2004).

    Article  Google Scholar 

  75. Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).

    Google Scholar 

  76. Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn (Springer, 2002).

  77. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

Download references

Acknowledgements

We would like to thank the country of French Polynesia and the people of Mo’orea for allowing the continual study of their marine ecosystems. We would also like to thank the MCR LTER, funded by the US National Science Foundation (OCE-1637396 and earlier awards) and CRIOBE and, in particular, A. Brooks and J. Claudet and all those who assisted in conducting the surveys used here, for their dedicated work generating the datasets used in this study and for making them publicly available. We thank C. Layman, D. Burkepile, T. Walsworth and V. Parravicini for thoughtful comments that greatly improved the manuscript. Support for this study was provided by Lucille and David Packard Fellowship and National Science Foundation OCE no. 1948622 to J.E.A.

Author information

Authors and Affiliations

Authors

Contributions

T.J.C. and J.E.A. conceived of the study. T.J.C. analysed the data. T.J.C. and J.E.A. wrote the original manuscript and subsequent revisions.

Corresponding authors

Correspondence to Timothy J. Cline or Jacob E. Allgeier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Aaron MacNeil, Michelle Paddack and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–6 and Figs. 1–4.

Reporting Summary

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cline, T.J., Allgeier, J.E. Fish community structure and dynamics are insufficient to mediate coral resilience. Nat Ecol Evol 6, 1700–1709 (2022). https://doi.org/10.1038/s41559-022-01882-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01882-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing