Skip to main content
Log in

ATR1 Angiotensin II Receptor Reduces Hemoglobin S Polymerization, Phosphatidylserine Exposure, and Increases Deformability of Sickle Cell Disease Erythrocytes

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Angiotensin II (Ang II) regulates blood volume and stimulates erythropoiesis through AT1 (ATR1) and AT2 (ATR2) receptors, found in multiple tissues, including erythrocytes. Sickle cell disease (SCD) patients present altered Ang II levels. Hemoglobin S polymerization, deformability and phosphatidylserine translocation are important features of mature erythrocytes, therefore, our hypothesis is Ang II affects these parameters and, if it does, what would be the influence of AT1R and AT2R on these effects. A polymerization assay (PA), deformability, and annexin V binding were performed in SCD erythrocytes samples adding Ang II, ATR1 antagonist (losartan or eprosartan), and ATR2 antagonist (PD123319). Through the PA test, we observed a dose-dependent polymerization inhibition effect when comparing Ang II to control. Losartan did not affect the level or the rate of Ang II inhibition, while PD123319 showed an increased level of protection against polymerization, and eprosartan brought levels back to control. Ang II was able to reduce the translocation of phosphatidylserine from the inner to the outer leaflet, a marker of eryptosis, in the presence of PD123319. Also, ATR1 showed a positive effect increasing deformability. Our data shows that ATR1 is important for maintenance of erythrocyte physiological function in SCD and for prolonging its life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Galiza Neto, G. C., de, Pitombeira, M., & da, S. (2003). Aspectos moleculares da anemia falciforme. J. Bras. Patol. E. Med. Lab., 39, 51–56. https://doi.org/10.1590/S1676-24442003000100011.

    Article  Google Scholar 

  2. Zago, M. A., & Pinto, A. C. S. (2007). Fisiopatologia das doenças falciformes: da mutação genética à insuficiência de múltiplos órgãos. Rev. Bras. Hematol. E Hemoter, 29, 207–214. https://doi.org/10.1590/S1516-84842007000300003.

    Article  Google Scholar 

  3. Bunn, H. F. (1997). Pathogenesis and treatment of sickle cell disease. N. Engl. J. Med., 337, 762–769. https://doi.org/10.1056/NEJM199709113371107.

    Article  CAS  PubMed  Google Scholar 

  4. Carvalho, S. C., Carvalho, L. C., Fernandes, J. G., & Santos, M. J. S. (2014). Em busca da equidade no sistema de saúde brasileiro: o caso da doença falciforme. Saúde E Soc., 23, 711–718. https://doi.org/10.1590/S0104-12902014000200029.

    Article  Google Scholar 

  5. Kato, G. J., Piel, F. B., Reid, C. D., Gaston, M. H., Ohene-Frempong, K., Krishnamurti, L., Smith, W. R., Panepinto, J. A., Weatherall, D. J., Costa, F. F., & Vichinsky, E. P. (2018). Sickle cell disease. Nat. Rev. Dis. Primer, 4, 18010 https://doi.org/10.1038/nrdp.2018.10.

    Article  Google Scholar 

  6. Papageorgiou, D. P., Abidi, S. Z., Chang, H.-Y., Li, X., Kato, G. J., Karniadakis, G. E., Suresh, S., & Dao, M. (2018). Simultaneous polymerization and adhesion under hypoxia in sickle cell disease. Proc. Natl. Acad. Sci. U S A., 115, 9473–9478. https://doi.org/10.1073/pnas.1807405115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Karnik, S. S., Unal, H., Kemp, J. R., Tirupula, K. C., Eguchi, S., Vanderheyden, P. M. L., & Thomas, W. G. (2015). International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin receptors: interpreters of pathophysiological angiotensinergic stimuli [corrected]. Pharmacol. Rev., 67, 754–819. https://doi.org/10.1124/pr.114.010454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zaman, M. A., Oparil, S., & Calhoun, D. A. (2002). Drugs targeting the renin-angiotensin-aldosterone system. Nat. Rev. Drug Discov., 1, 621–636. https://doi.org/10.1038/nrd873.

    Article  CAS  PubMed  Google Scholar 

  9. Savoia, C., Burger, D., Nishigaki, N., Montezano, A., & Touyz, R. M. (2011). Angiotensin II and the vascular phenotype in hypertension. Expert Rev. Mol. Med., 13, e11. https://doi.org/10.1017/S1462399411001815.

    Article  CAS  PubMed  Google Scholar 

  10. Turu, G., Balla, A., & Hunyady, L. (2019). The Role of β-Arrestin Proteins in Organization of Signaling and Regulation of the AT1 Angiotensin Receptor. Front Endocrinol (Lausanne), 10, 519. https://doi.org/10.3389/fendo.2019.00519.

    Article  Google Scholar 

  11. Brito, P. L., Dos Santos, A. F., Chweih, H., Favero, M. E., Gotardo, E. M. F., Silva, J. A. F., Leonardo, F. C., Franco-Penteado, C. F., de Oliveira, M. G., Ferreira, W. A., Zaidan, B. C., Billis, A., Baldanzi, G., Mashima, D. A., Antunes, E., Saad, S. T. O., Costa, F. F., & Conran, N. (2022). Reduced blood pressure in sickle cell disease is associated with decreased angiotensin converting enzyme (ACE) activity and is not modulated by ACE inhibition. PloS One, 17, e0263424 https://doi.org/10.1371/journal.pone.0263424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Azushima, K., Morisawa, N., Tamura, K., & Nishiyama, A. (2020). Recent research advances in renin-angiotensin-aldosterone system receptors. Curr. Hypertens. Rep., 22, 22 https://doi.org/10.1007/s11906-020-1028-6.

    Article  PubMed  Google Scholar 

  13. Yee, M. E., Lane, P. A., Archer, D. R., Joiner, C. H., Eckman, J. R., & Guasch, A. (2018). Losartan therapy decreases albuminuria with stable glomerular filtration and permselectivity in sickle cell anemia. Blood Cells. Mol. Dis., 69, 65–70. https://doi.org/10.1016/j.bcmd.2017.09.006.

    Article  CAS  PubMed  Google Scholar 

  14. Roy, S., Rai, P., Mpollo, M.-S. E. M., Chang, K.-H., Rizvi, T., Shanmukhappa, S. K., VandenHeuvel, K., Aronow, B., Inagami, T., Cancelas, J. A., & Malik, P. (2018). Angiotensin receptor signaling in sickle cell anemia has a reno-protective effect on urine concentrating ability but results in sickle glomerulopathy. Am. J. Hematol., 93, E177–E181. https://doi.org/10.1002/ajh.25118.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Oguanobi, N. I., Onwubere, B. J. C., Ibegbulam, O. G., Ike, S. O., Anisiuba, B. C., Ejim, E. C., & Agwu, O. (2010). Arterial blood pressure in adult Nigerians with sickle cell anemia. J. Cardiol., 56, 326–331. https://doi.org/10.1016/j.jjcc.2010.07.001.

    Article  CAS  PubMed  Google Scholar 

  16. Johnson, C. S. (2005). Arterial blood pressure and hyperviscosity in sickle cell disease. Hematol. Oncol. Clin. North Am., Sickle Cell Disease, 19, 827–837. https://doi.org/10.1016/j.hoc.2005.08.006.

    Article  Google Scholar 

  17. Rees, D. C., Williams, T. N., & Gladwin, M. T. (2010). Sickle-cell disease. Lancet Lond. Engl, 376, 2018–2031. https://doi.org/10.1016/S0140-6736(10)61029-X.

    Article  CAS  Google Scholar 

  18. Ataga, K. I., Derebail, V. K., & Archer, D. R. (2014). The glomerulopathy of sickle cell disease. Am. J. Hematol., 89, 907–914. https://doi.org/10.1002/ajh.23762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guimarães-Nobre, C. C., Mendonça-Reis, E., Passinho-da-Costa, L., Miranda-Alves, L., & Berto-Junior, C. (2021). Signaling Pathway in the Osmotic Resistance Induced by Angiotensin II AT2 Receptor Activation in Human Erythrocytes. rbmb, 10, 314–326.

    Article  Google Scholar 

  20. Chikezie, P. C. (2011). Sodium metabisulfite–induced polymerization of sickle cell hemoglobin incubated in the extracts of three medicinal plants (Anacardium occidentale, Psidium guajava, and Terminalia catappa). Pharmacogn. Mag., 7, 126–132. https://doi.org/10.4103/0973-1296.80670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dufu, K., Patel, M., Oksenberg, D., & Cabrales, P. (2018). GBT440 improves red blood cell deformability and reduces viscosity of sickle cell blood under deoxygenated conditions. Clin. Hemorheol. Microcirc, 70, 95–105. https://doi.org/10.3233/CH-170340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheng, Z. J., Vapaatalo, H., & Mervaala, E. (2005). Angiotensin II and vascular inflammation. Med. Sci. Monit., 11, RA194–RA205.

    CAS  PubMed  Google Scholar 

  23. Kato, H., Ishida, J., Matsusaka, T., Ishimaru, T., Tanimoto, K., Sugiyama, F., Yagami, K., Nangaku, M., Fukamizu, A., 2015. Erythropoiesis and Blood Pressure Are Regulated via AT1 Receptor by Distinctive Pathways. PLoS ONE 10. https://doi.org/10.1371/journal.pone.0129484

  24. Julian, B. A., Brantley, R. R., Barker, C. V., Stopka, T., Gaston, R. S., Curtis, J. J., Lee, J. Y., & Prchal, J. T. (1998). Losartan, an angiotensin II type 1 receptor antagonist, lowers hematocrit in posttransplant erythrocytosis. J. Am. Soc. Nephrol., 9, 1104–1108. https://doi.org/10.1681/ASN.V961104.

    Article  CAS  PubMed  Google Scholar 

  25. Quinn, C. T., Saraf, S. L., Gordeuk, V. R., Fitzhugh, C. D., Creary, S. E., Bodas, P., George, A., Raj, A. B., Nero, A. C., Terrell, C. E., McCord, L., Lane, A., Ackerman, H. C., Yang, Y., Niss, O., Taylor, M. D., Devarajan, P., & Malik, P. (2017). Losartan for the nephropathy of sickle cell anemia: A Phase-2, multi-center trial. Am. J. Hematol, 92, E520–E528. https://doi.org/10.1002/ajh.24810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zaidan, T. L., de Matos, W. S., Machado, É. G., Junqueira, T. N. F., Vicentini, S. C., Presta, G. A., & Santos-Filho, S. D. (2010). Cellular effects of an aqueous solution of Losartan® on the survival of Escherichia coli AB1157 in the presence and absence of SnCl2, and on the physiological property (osmotic fragility) of the erytrocyte. Adv. Biosci. Biotechnol, 01, 300–304. https://doi.org/10.4236/abb.2010.14039.

    Article  CAS  Google Scholar 

  27. Brodsky, S., Gurbanov, K., Abassi, Z., Hoffman, A., Ruffolo, R. R., Feuerstein, G. Z., & Winaver, J. (1998). Effects of Eprosartan on renal function and cardiac hypertrophy in rats with experimental heart failure. Hypertension, 32, 746–752. https://doi.org/10.1161/01.HYP.32.4.746.

    Article  CAS  PubMed  Google Scholar 

  28. Olubiyi, O. O., Olagunju, M. O., & Strodel, B. (2019). Rational drug design of peptide-based therapies for sickle cell disease. Molecules, 24, 4551 https://doi.org/10.3390/molecules24244551.

    Article  CAS  PubMed Central  Google Scholar 

  29. Hunyady, L., Bor, M., Balla, T., & Catt, K. J. (1994). Identification of a cytoplasmic Ser-Thr-Leu motif that determines agonist-induced internalization of the AT1 angiotensin receptor. J. Biol. Chem, 269, 31378–31382.

    Article  CAS  Google Scholar 

  30. Hunyady, L., Catt, K. J., Clark, A. J., & Gáborik, Z. (2000). Mechanisms and functions of AT(1) angiotensin receptor internalization. Regul. Pept., 91, 29–44. https://doi.org/10.1016/s0167-0115(00)00137-3.

    Article  CAS  PubMed  Google Scholar 

  31. dos Santos, A. F., Almeida, C. B., Brugnerotto, A. F., Roversi, F. M., Pallis, F. R., Franco-Penteado, C. F., Lanaro, C., Albuquerque, D. M., Leonardo, F. C., Costa, F. F., & Conran, N. (2014). Reduced plasma angiotensin II levels are reversed by hydroxyurea treatment in mice with sickle cell disease. Life Sci, 117, 7–12. https://doi.org/10.1016/j.lfs.2014.08.021.

    Article  CAS  PubMed  Google Scholar 

  32. Higuchi, S., Ohtsu, H., Suzuki, H., Shirai, H., Frank, G. D., & Eguchi, S. (2007). Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin. Sci. Lond. Engl., 1979(112), 417–428. https://doi.org/10.1042/CS20060342.

    Article  CAS  Google Scholar 

  33. Zhang, J., Jones, S.-M., Lykotrafitis, G., Andemariam, B., 2019. Valsartan impedes epinephrine-induced ICAM-4 activation on normal, sickle cell trait and sickle cell disease red blood cells. PLoS ONE 14. https://doi.org/10.1371/journal.pone.0216467

Download references

Acknowledgements

We thank FAPERJ, FUNEMAC, CAPEs, and CNPq for financial support.

Funding

This study was supported by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (ARC-2019 E-26/010.002689/2019) (JCNE-FAPERJ, E-26/201.520/2014; Edital Sediadas-FAPERJ, E-26/010.000175/2016), Conselho Nacional de Desenvolvimento Científico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Ciências sem Fronteiras/PVE/88881.062218/2014-0), who supported the scholarship. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemilson Berto-Junior.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guimarães-Nobre, C.C., Mendonça-Reis, E., Teixeira-Alves, L.R. et al. ATR1 Angiotensin II Receptor Reduces Hemoglobin S Polymerization, Phosphatidylserine Exposure, and Increases Deformability of Sickle Cell Disease Erythrocytes. Cell Biochem Biophys 80, 711–721 (2022). https://doi.org/10.1007/s12013-022-01096-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-022-01096-y

Keywords

Navigation