Skip to main content
Log in

Outage probability analysis of FSO system with Airy beam as carrier

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Based on the scintillation index of Airy beam and exponentiated Weibull channel model, analytical expressions of outage probability for free-space optical (FSO) communication links with Airy beam as a signal carrier under weak atmospheric turbulence and on–off keying modulation scheme are derived. The outage probability at various propagation distances, transverse scale factors and exponential decay factors has been evaluated. And we compared the outage probability of FSO links with Airy beam and Gaussian beam as a signal carrier. The results show that the outage probability of FSO links with Airy beam as carrier decreases with the increase of threshold parameter and increases with the increase of propagation distance. When the transverse scale factor of Airy beam is about 2 cm, a lower outage probability can be obtained. And the smaller the exponential decay factor of the Airy beam, the lower the outage probability. Under the same source power or source width, the outage probability of FSO links with Airy beam as a carrier is significantly lower than that of FSO links with Gaussian beam as a carrier. The results of this research have some reference significance for the application of Airy beam in FSO communication system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Chaaban, A., Morvan, J., Alouini, M.: Free-space optical communications: capacity bounds, approximations, and a new sphere-packing perspective. IEEE T. Commun. 64(3), 1176–1191 (2016)

    Article  Google Scholar 

  2. Kaushal, H., Kaddoum, G.: Optical communication in space: challenges and mitigation techniques. IEEE Commun. Surv Tut. 19(1), 57–96 (2016)

    Article  Google Scholar 

  3. Xu, G.J., Song, Z.H., Zhang, Q.Y.: Outage probability and channel capacity of an optical spherical wave propagating through anisotropic weak-to-strong oceanic turbulence with Málaga distribution. J. Opt. Soc. Am. A. 37, 1622–1629 (2020)

    Article  ADS  Google Scholar 

  4. Lin, Z.R., Xu, G.J., Zhang, Q.Y., Song, Z.H.: Scintillation index for spherical wave propagation in anisotropic weak oceanic turbulence with aperture averaging under the effect of inner scale and outer scale. Photonics 9, 458 (2022)

    Article  Google Scholar 

  5. Gupta, R., Kamal, T.S.: Performance analysis of OFDM based FSO communication system with TCM codes. Optik 248, 168141 (2021)

    Article  ADS  Google Scholar 

  6. Álvarez-Roa, M., Álvarez-Roa, C., Fernández-Aragón, F., Raddo, T., Garrido-Balsells, J.M., Tafur-Monroy, I., Jurado-Navas, A.: Performance analysis of atmospheric optical communication systems with spatial diversity affected by correlated turbulence. J. Opt. Commun. Netw. 14, 524–539 (2022)

    Article  Google Scholar 

  7. Bosu, R., Prince, S.: Mitigation of turbulence induced scintillation using concave mirror in reflection-assisted OOK free space optical links. Opt. Commun. 432, 101–111 (2019)

    Article  ADS  Google Scholar 

  8. Kaur, P., Jain, V.K., Kar, S.: Effect of atmospheric conditions and aperture averaging on capacity of free space optical links. Opt. Quant. Electron. 46, 1139–1148 (2014)

    Article  Google Scholar 

  9. Peleg, A.J., Moloney, V.: Scintillation reduction by use of multiple Gaussian laser beams with different wavelengths. IEEE Photonic. Tech. L. 19(12), 883–889 (2007)

    Article  ADS  Google Scholar 

  10. Li, J.W., Chen, W.B.: Investigation on bandwidth of adaptive optical system in satellite-ground coherent optical communication. Chin. J. Lasers. 43(8), 0806003 (2016)

    Article  Google Scholar 

  11. Andrews, L.C.: Aperture-averaging factor for optical scintillations of plane and spherical waves in the atmosphere. J. Opt. Soc. Am. A. 9(4), 597–600 (1992)

    Article  ADS  Google Scholar 

  12. Zhang, H.G., Tang, X., Lin, B.J., Zhou, Z.L., Lin, C., Chaudhary, S., Ghassemlooy, Z.: Performance analysis of FSO system with different modulation schemes over gamma-gamma turbulence channel. In: Proc. of SPIE. 11048 (2019)

  13. Chu, X.C., Zhao, S.H., Chen, Z., Li, Y.J., Li, R.X., Fang, Y.W.: Research progress of Airy beam and feasibility analysis for its application in FSO system. Chin. Sci. Bull 61(17), 1962–1974 (2016)

    Article  Google Scholar 

  14. Siviloglou, G.A., Siviloglou, D.N.: Accelerating finite energy Airy beams. Opt Lett. 32(8), 979–981 (2007)

    Article  ADS  Google Scholar 

  15. Siviloglou, G.A., Broky, J., Dogariu, A., Christodoulides, D.N.: Observation of accelerating Airy beams. Phys. Rev. Lett. 99(21), 213901 (2007)

    Article  ADS  Google Scholar 

  16. Liu, X., Xia, D.N., Monfared, Y.E., Liang, C.H., Wang, F., Cai, Y.J., Ma, P.J.: Generation of novel partially coherent truncated Airy beams via Fourier phase processing. Opt. Express 28(7), 9777–9785 (2020)

    Article  ADS  Google Scholar 

  17. Gu, Y., Gbur, G.: Scintillation of Airy beam arrays in atmospheric turbulence. Opt. Lett. 35(20), 3456–3458 (2010)

    Article  ADS  Google Scholar 

  18. Chu, X.C., Zhao, S.H., Fang, Y.W.: Maximum non-diffracting propagation distance of aperture-truncated Airy beams. Opt. Commun. 414, 5–9 (2018)

    Article  ADS  Google Scholar 

  19. Chen, C.Y., Yang, H.M., Kavehrad, M., Zhou, Z.: Propagation of radial Airy array beams through atmospheric turbulence. Opt. Laser. Eng. 52, 106–114 (2014)

    Article  Google Scholar 

  20. Ji, X.L., Eyyuboğlu, H.T., Ji, G.M., Jia, X.H.: Propagation of an Airy beam through the atmosphere. Opt. Express 21(2), 2154–2164 (2013)

    Article  ADS  Google Scholar 

  21. Tao, R.M., Si, L., Ma, Y.X., Zhou, P., Liu, Z.J.: Average spreading of finite energy Airy beams in non-Kolmogorov turbulence. Opt. Laser. Eng. 51, 488–492 (2013)

    Article  Google Scholar 

  22. Eyyuboğlu, H.T.: Scintillation behavior of Airy beam. Opt. Laser. Technol. 47, 232–236 (2013)

    Article  ADS  Google Scholar 

  23. Wang, J.A., Wang, X.L., Guo, L.Y., Che, Y., Yin, P.: Light intensity scintillation of Airy beam. Acta. Optica. Sinica. 37(1), 0626001 (2017)

    Article  Google Scholar 

  24. Lu, Q., Gao, S.J., Sheng, L., Wu, J.B., Qiao, Y.F.: Generation of coherent and incoherent Airy beam arrays and experimental comparisons of their scintillation characteristics in atmospheric turbulence. Appl. Optics 56(13), 3750–3757 (2017)

    Article  ADS  Google Scholar 

  25. Wen, W., Jin, Y., Hu, M.J., Liu, X.L., Cai, Y.J., Zou, C.J., Luo, M., Zhou, L.W., Chu, X.X.: Beam wander of coherent and partially coherent Airy beam arrays in a turbulent atmosphere. Opt. Commun. 415, 48–55 (2018)

    Article  ADS  Google Scholar 

  26. Rose, P., Diebel, F., Boguslawski, M., Denz, C.: Airy beam induced optical routing. Appl. Phys. Lett. 102, 101101 (2013)

    Article  ADS  Google Scholar 

  27. Liang, Y., Hu, Y., Song, D.H., Lou, C.B., Zhang, X.Z., Chen, Z.G., Xu, J.J.: Image signal transmission with Airy beams. Opt. Lett. 40(23), 5686–5689 (2015)

    Article  ADS  Google Scholar 

  28. Zhu, G.X., Wen, Y.H., Wu, X., Chen, Y.J., Liu, J., Yu, S.Y.: Obstacle evasion in free-space optical communications utilizing Airy beams. Opt. Lett. 43(6), 1203–1206 (2018)

    Article  ADS  Google Scholar 

  29. Chu, X.C., Liu, R.J., Li, Y., Ni, Y.H., Wang, X., Han, Z.X.: BER analysis of FSO system with Airy beam as carrier over exponentiated Weibull channel model. Opt. Quant. Electron. 53, 692 (2021)

    Article  Google Scholar 

  30. Zhao, J., Zhao, S.H., Zhao, W.H., Li, Y.J., Liu, Y., Li, X.: Analysis of link performance and robustness of homodyne BPSK for airborne backbone laser communication system. Opt. Commun. 359, 189–194 (2016)

    Article  ADS  Google Scholar 

  31. Fu, Y.L., Ma, J., Yu, S.Y., Tan, L.Y.: BER performance analysis of coherent SIMO FSO systems over correlated non-Kolmogorov turbulence fading with nonzero boresight pointing error. Opt. Commun. 430, 31–38 (2019)

    Article  ADS  Google Scholar 

  32. Barrios, R., Dios, F.: Exponentiated Weibull model for the irradiance probability density function of a laser beam propagating atmospheric turbulence. Opt. Laser. Technol. 45, 13–20 (2013)

    Article  ADS  Google Scholar 

  33. Kolbig, K.S., Prudnikov, A.P., Bryckov, Y.A., et al.: Integrals and series: more special functions. Math. Comput. 44(170), 573 (1985)

    Article  Google Scholar 

  34. Frida, S.V.: Fade statistics for a lasercom system and the joint PDF of a Gamma-Gamma distributed irradiance and its time derivative. University of Central Florida, Florida (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Li.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chu, Xc., Wang, X. et al. Outage probability analysis of FSO system with Airy beam as carrier. Opt Rev 29, 469–475 (2022). https://doi.org/10.1007/s10043-022-00763-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-022-00763-y

Keywords

Navigation