Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Thermodynamics

A supercharged photonic quantum heat engine

A photonic quantum heat engine based on superradiance — many-atom quantum coherence — is shown to deliver enhanced operation, with an efficiency no longer bounded by the Carnot limit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photonic quantum engines.

References

  1. Eddington, A. S. The Nature of the Physical World (Macmillan, 1929).

  2. Ramsey, N. F. in Spectroscopy with Coherent Radiation: Selected Papers of Norman F. Ramsey with Commentary (ed. Ramsey, N. F.) 389 (World Scientific, 1998).

  3. Kim, J. et al. Nat. Photon. https://doi.org/10.1038/s41566-022-01039-2 (2022).

    Article  Google Scholar 

  4. Scully, M. O., Zubairy, M. S., Agarwal, G. S. & Walther, H. Science 299, 862–864 (2003).

    Article  ADS  Google Scholar 

  5. Klaers, J., Faelt, S., Imamoglu, A. & Togan, E. Phys. Rev. X 7, 031044 (2017).

    Google Scholar 

  6. Engel, G. S. et al. Nature 446, 782–786 (2007).

    Article  ADS  Google Scholar 

  7. Lee, H., Cheng, Y.-C. & Fleming, G. R. Science 316, 1462–1465 (2007).

    Article  ADS  Google Scholar 

  8. Dorfman, K. E., Voronine, D. V., Mukamel, S. & Scully, M. O. Proc. Natl Acad. Sci. USA 110, 2746–2751 (2013).

    Article  ADS  Google Scholar 

  9. Scully, M. O., Chapin, K. R., Dorfman, K. E., Kim, M. & Svidzinsky, A. A. Proc. Natl Acad. Sci. USA 108, 15097–15100 (2011).

    Article  ADS  Google Scholar 

  10. Hameroff, S. & Penrose, R. Phys. Life Rev. 11, 39–78 (2014).

    Article  ADS  Google Scholar 

  11. Ludwig, M., Qian, J., Kubala, B. & Marquardt, F. Phys. Rev. Lett. 107, 043603 (2011).

    Article  ADS  Google Scholar 

  12. Zhang, M., Shah, S., Cardenas, J. & Lipson, M. Phys. Rev. Lett. 115, 163902 (2015).

    Article  ADS  Google Scholar 

  13. Fröhlich, H. Nature 228, 1093 (1970).

    Article  ADS  Google Scholar 

  14. Reimers, J. R., McKemmish, L. K., McKenzie, R. H., Mark, A. E. & Hush, N. S. Proc. Natl Acad. Sci. USA 106, 4219–4224 (2009).

    Article  ADS  Google Scholar 

  15. Zhang, Z., Agarwal, G. S. & Scully, M. O. Phys. Rev. Lett. 122, 158101 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlan Scully.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Scully, M. & Svidzinsky, A. A supercharged photonic quantum heat engine. Nat. Photon. 16, 669–670 (2022). https://doi.org/10.1038/s41566-022-01076-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01076-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing