Skip to main content
Log in

Idiopathic infantile hypercalcemia in children with chronic kidney disease due to kidney hypodysplasia

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Idiopathic infantile hypercalcemia (IIH) etiologies include pathogenic variants in CYP24A1, leading to increased 1,25(OH)2 D, hypercalciuria and suppressed parathyroid hormone (PTH), and in SLC34A1 and SLC34A3, leading to the same metabolic profile via increased phosphaturia. IIH has not been previously described in CKD due to kidney hypodysplasia (KHD).

Methods

Retrospective study of children with bilateral KHD and simultaneously tested PTH and 1,25(OH)2D, followed in a tertiary care center between 2015 and 2021.

Results

Of 295 screened patients, 139 had KHD, of them 16 (11.5%) had IIH (study group), 26 with normal PTH and any 1,25(OH)2D were controls. There were no differences between groups’ gender, obstructive uropathy rate and baseline eGFR. Study patients were younger [median (IQR) age: 5.2 (3.2–11.3) vs. 61 (13.9–158.3) months, p < 0.001], had higher 1,25(OH)2D (259.1 ± 91.7 vs. 156.5 ± 46.4 pmol/l, p < 0.001), total calcium (11.1 ± 0.4 vs. 10.7 ± 0.3 mg/dl, p < 0.001), and lower phosphate standard deviation score (P-SDS) [median (IQR): − 1.4 (− 1.9, − 0.4) vs. − 0.3 (− 0.8, − 0.1), p = 0.03]. During 12 months of follow-up, PTH increased among the study group (8.8 ± 2.8 to 22.7 ± 12.4 pg/ml, p < 0.001), calcium decreased (11 ± 0.5 to 10.3 ± 0.6 mg/dl, p = 0.004), 1,25(OH)2D decreased (259.5 ± 91.7 to 188.2 ± 42.6 pmol/l, p = 0.1), P-SDS increased [median (IQR): − 1.4 (− 1.9, − 0.4) vs. − 0.3 (− 0.9, 0.4), p = 0.04], while eGFR increased. Five of 9 study group patients with available urine calcium had hypercalciuria. Five patients had nephrocalcinosis/lithiasis. Genetic analysis for pathogenic variants in CYP24A1, SLC34A1 and SLC34A3 had not been performed.

Conclusions

Transient IIH was observed in infants with KHD, in association with hypophosphatemia, resembling SLC34A1 and SLC34A3 pathogenic variants’ metabolic profile.

Graphical abstract

A higher resolution version of the Graphical abstract is available as Supplementary information

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Woolf AS, Price KL, Scambler PJ, Winyard PJ (2004) Evolving concepts in human renal dysplasia. J Am Soc Nephrol 15:998–1007. https://doi.org/10.1097/01.asn.0000113778.06598.6f

    Article  PubMed  Google Scholar 

  2. Ichikawa I, Kuwayama F, Pope JC 4th, Stephens FD, Miyazaki Y (2002) Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT. Kidney Int 61:889–898. https://doi.org/10.1046/j.1523-1755.2002.00188.x

    Article  PubMed  Google Scholar 

  3. Ekstrom T (1955) Renal hypoplasia; a clinical study of 179 cases. Acta Chir Scand 203:1–168

    CAS  Google Scholar 

  4. Levin A, Bakris GL, Molitch M, Smulders M, Tian J, Williams LA, Andress DL (2007) Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int 71:31–38. https://doi.org/10.1038/sj.ki.5002009

    Article  CAS  PubMed  Google Scholar 

  5. Schmitt CP, Mehls O (2008) Disorders of bone mineral metabolism in chronic kidney disease. In: Geary D, Schaefer F (eds) Comprehensive Pediatric Nephrology. Mosby Elsevier, Philadelphia

    Google Scholar 

  6. Salusky IB, Goodman WG, Sahney S, Gales B, Perilloux A, Wang HJ, Elashoff RM, Jüppner H (2005) Sevelamer controls parathyroid hormone-induced bone disease as efficiently as calcium carbonate without increasing serum calcium levels during therapy with active vitamin D sterols. J Am Soc Nephrol 16:2501–2508. https://doi.org/10.1681/ASN.2004100885

    Article  CAS  PubMed  Google Scholar 

  7. Schlingmann KP, Kaufmann M, Weber S, Irwin A, Goos C, John U, Misselwitz J, Klaus G, Kuwertz-Bröking E, Fehrenbach H, Wingen AM, Güran T, Hoenderop JG, Bindels RJ, Prosser DE, Jones G, Konrad M (2011) Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med 365:410–421. https://doi.org/10.1056/NEJMoa1103864

    Article  CAS  PubMed  Google Scholar 

  8. Schlingmann KP, Ruminska J, Kaufmann M, Dursun I, Patti M, Kranz B, Pronicka E, Ciara E, Akcay T, Bulus D, Cornelissen EA, Gawlik A, Sikora P, Patzer L, Galiano M, Boyadzhiev V, Dumic M, Vivante A, Kleta R, Dekel B, Levtchenko E, Bindels RJ, Rust S, Forster IC, Hernando N, Jones G, Wagner CA, Konrad M (2016) Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J Am Soc Nephrol 27:604–614. https://doi.org/10.1681/ASN.2014101025

    Article  CAS  PubMed  Google Scholar 

  9. Nesterova G, Malicdan MC, Yasuda K, Sakaki T, Vilboux T, Ciccone C, Horst R, Huang Y, Golas G, Introne W, Huizing M, Adams D, Boerkoel CF, Collins MT, Gahl WA (2013) 1,25-(OH)2D–24 hydroxylase (CYP24A1) deficiency as a cause of nephrolithiasis. Clin J Am Soc Nephrol 8:649–657. https://doi.org/10.2215/CJN.05360512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Paolis E, Scaglione GL, De Bonis M, Minucci A, Capoluongo E (2019) CYP24A1 and SLC34A1 genetic defects associated with idiopathic infantile hypercalcemia: from genotype to phenotype. Clin Chem Lab Med 57:1650–1667. https://doi.org/10.1515/cclm-2018-1208

    Article  CAS  PubMed  Google Scholar 

  11. Dinour D, Beckerman P, Ganon L, Tordjman K, Eisenstein Z, Holtzman EJ (2013) Loss-of-function mutations of CYP24A1, the vitamin D 24-hydroxylase gene, cause long-standing hypercalciuric nephrolithiasis and nephrocalcinosis. J Urol 190:552–557. https://doi.org/10.1016/j.juro.2013.02.3188

    Article  CAS  PubMed  Google Scholar 

  12. Meusburger E, Mündlein A, Zitt E, Obermayer-Pietsch B, Kotzot D, Lhotta K (2013) Erratum: Medullary nephrocalcinosis in an adult patient with idiopathic infantile hypercalcaemia and a novel CYP24A1 mutation. Clin Kidney J 6:453. https://doi.org/10.1093/ckj/sft091.Erratumfor:(2013)ClinKidneyJ6:211-215

    Article  PubMed  PubMed Central  Google Scholar 

  13. Al Kalbani N, Frieling M, Teh JC, Harvey E, Geary DF (2011) Idiopathic hypercalcemia in infants with renal dysplasia. Clin Nephrol 75:466–471. https://doi.org/10.5414/cnp75466

    Article  CAS  PubMed  Google Scholar 

  14. Kodous N, Filler G, Sharma AP, Van Hooren TA (2015) PTHrP-related hypercalcaemia in infancy and congenital anomalies of the kidney and urinary tract (CAKUT). Can J Kidney Health Dis 11:21. https://doi.org/10.1186/s40697-015-0052-y

    Article  Google Scholar 

  15. Feinstein S, Becker-Cohen R, Rinat C, Frishberg Y (2006) Hyperphosphatemia is prevalent among children with nephrotic syndrome and normal renal function. Pediatr Nephrol 21:1406–1412. https://doi.org/10.1007/s00467-006-0195-2

    Article  PubMed  Google Scholar 

  16. Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637. https://doi.org/10.1681/ASN.2008030287

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ishimura E, Nishizawa Y, Inaba M, Matsumoto N, Emoto M, Kawagishi T, Shoji S, Okuno S, Kim M, Miki T, Morii H (1999) Serum levels of 1,25-dihydroxyvitamin D, 24,25- dihydroxyvitamin D, and 25-hydroxyvitamin D in nondialyzed patients with chronic renal failure. Kidney Int 55:1019–1027. https://doi.org/10.1046/j.1523-1755.1999.0550031019.x

    Article  CAS  PubMed  Google Scholar 

  18. Petkovich M, Jones G (2011) CYP24A1 and kidney disease. Curr Opin Nephrol Hypertens 20:337–344. https://doi.org/10.1097/MNH.0b013e3283477a7b

    Article  CAS  PubMed  Google Scholar 

  19. Lightwood R, Stapleton T (1953) Idiopathic hypercalcaemia in infants. Lancet 265:255–256. https://doi.org/10.1016/s0140-6736(53)90187-1

    Article  CAS  PubMed  Google Scholar 

  20. Rhaney K, Mitchell RG (1956) Idiopathic hypercalcaemia of infants. Lancet 270:1028–1032. https://doi.org/10.1016/s0140-6736(56)90798-x

    Article  CAS  PubMed  Google Scholar 

  21. Janiec A, Halat-Wolska P, Obrycki Ł, Ciara E, Wójcik M, Płudowski P, Wierzbicka A, Kowalska E, Książyk JB, Kułaga Z, Pronicka E, Litwin M (2021) Long-term outcome of the survivors of infantile hypercalcaemia with CYP24A1 and SLC34A1 mutations. Nephrol Dial Transplant 36:1484–1492. https://doi.org/10.1093/ndt/gfaa178

    Article  CAS  PubMed  Google Scholar 

  22. Huang J, Coman D, McTaggart SJ, Burke JR (2006) Long-term follow-up of patients with idiopathic infantile hypercalcaemia. Pediatr Nephrol 21:1676–1680. https://doi.org/10.1007/s00467-006-0217-0

    Article  PubMed  Google Scholar 

  23. Gurevich E, Levi S, Borovitz Y, Alfandary H, Ganon L, Dinour D, Davidovits M (2021) Childhood hypercalciuric hypercalcemia with elevated vitamin D and suppressed parathyroid hormone: long-term follow up. Front Pediatr 9:752312. https://doi.org/10.3389/fped.2021.752312

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kovacs CS (2014) Bone development and mineral homeostasis in the fetus and neonate: roles of the calciotropic and phosphotropic hormones. Physiol Rev 94:1143–1218. https://doi.org/10.1152/physrev.00014.2014

    Article  CAS  PubMed  Google Scholar 

  25. Northrop G, Misenhimer HR, Becker FO (1977) Failure of parathyroid hormone to cross the nonhuman primate placenta. Am J Obstet Gynecol 129:449–453. https://doi.org/10.1016/0002-9378(77)90593-2

    Article  CAS  PubMed  Google Scholar 

  26. Rigo J, Pieltain C, Viellevoye R, Bagnoli F (2018) Calcium and phosphorus homeostasis: pathophysiology. In: Buonocore G, Bracci R, Weindling M (eds) Neonatology. Springer, Cham

    Google Scholar 

  27. Mayne PD, Kovar IZ (1991) Calcium and phosphorus metabolism in the premature infant. Ann Clin Biochem 28(Pt 2):131–142. https://doi.org/10.1177/000456329102800203

    Article  CAS  PubMed  Google Scholar 

  28. Lichtenstein P, Specker BL, Tsang RC, Mimouni F, Gormley C (1986) Calcium-regulating hormones and minerals from birth to 18 months of age: a cross-sectional study. I. Effects of sex, race, age, season, and diet on vitamin D status. Pediatrics 77:883–890

    Article  CAS  PubMed  Google Scholar 

  29. Stein DR, Feldman HA, Gordon CM (2012) Vitamin D status in children with chronic kidney disease. Pediatr Nephrol 27:1341–1350. https://doi.org/10.1007/s00467-012-2143-7

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pulskens WP, Verkaik M, Sheedfar F, van Loon EP, van de Sluis B, Vervloet MG, Hoenderop JG, Bindels RJ, NIGRAM Consortium (2015) Deregulated renal calcium and phosphate transport during experimental kidney failure. PLoS One 10:e0142510. https://doi.org/10.1371/journal.pone.0142510

Download references

Acknowledgements

We thank Uri Alon, MD, for his critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Landau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Graphical Abstract (PPTX 74 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurevich, E., Borovitz, Y., Levi, S. et al. Idiopathic infantile hypercalcemia in children with chronic kidney disease due to kidney hypodysplasia. Pediatr Nephrol 38, 1067–1073 (2023). https://doi.org/10.1007/s00467-022-05740-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-022-05740-w

Keywords

Navigation