Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A reverse-selective ion exchange membrane for the selective transport of phosphates via an outer-sphere complexation–diffusion pathway

Abstract

Specific-ion selectivity is a highly desirable feature for the next generation of membranes. However, existing membranes rely on differences in charge, size and hydration energy, which limits their ability to target individual ion species. Here we demonstrate a nanocomposite ion-exchange membrane material that enables a reverse-selective transport mechanism that can selectively pass a single ion species. We demonstrate this transport mechanism with phosphate ions selectively transporting across negatively charged cation exchange membranes. Selective transport is enabled by the in situ growth of hydrous manganese oxide nanoparticles throughout a cation exchange membrane that provide a diffusion pathway via phosphate-specific, reversible outer-sphere interactions. On incorporating the hydrous manganese oxide nanoparticles, the membrane’s phosphate flux increased by a factor of 27 over an unmodified cation exchange membrane, and the selectivity of phosphorous over sulfate, nitrate and chloride reaches 47, 100 and 20, respectively. By pairing ion-specific outer-sphere interactions between the target ions and appropriate nanoparticles, these nanocomposite ion-exchange materials can, in principle, achieve selective transport for a range of ions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Membrane characterization.
Fig. 2: Membrane performance and selectivity.
Fig. 3: Molecular dynamics simulations of phosphate transport.
Fig. 4: Comparing experimental values and model predictions.

Similar content being viewed by others

Data availability

All data that support the plots within this paper are available via FigShare at https://doi.org/10.6084/m9.figshare.20173325. Source data are provided with this paper.

Code availability

The source code for the model is available via GitHub at https://github.com/a-iddya/Nanocomposite-membrane.

References

  1. Duchanois, R. M. et al. Designing polymeric membranes with coordination chemistry for high-precision ion separations. Sci. Adv. 8, eabm9436 (2022).

  2. Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).

    Article  CAS  Google Scholar 

  3. Luo, T., Abdu, S. & Wessling, M. Selectivity of ion exchange membranes: a review. J. Memb. Sci. 555, 429–454 (2018).

    Article  CAS  Google Scholar 

  4. Subramonian, S. & Clifford, D. Monovalent/divalent selectivity and the charge separation concept. React. Polym. Ion Exch. Sorbents 9, 195–209 (1988).

    Article  CAS  Google Scholar 

  5. Güler, E., van Baak, W., Saakes, M. & Nijmeijer, K. Monovalent-ion-selective membranes for reverse electrodialysis. J. Memb. Sci. 455, 254–270 (2014).

    Article  Google Scholar 

  6. Ran, J. et al. Ion exchange membranes: new developments and applications. J. Memb. Sci. 522, 267–291 (2017).

    Article  CAS  Google Scholar 

  7. DuChanois, R. M. et al. Designing polymeric membranes with coordination chemistry for high-precision ion separations. Sci. Adv. 8, eabm9436 (2022).

    Article  CAS  Google Scholar 

  8. DuChanois, R. M., Porter, C. J., Violet, C., Verduzco, R. & Elimelech, M. Membrane materials for selective ion separations at the water–energy nexus. Adv. Mater. 33, 2101312 (2021).

  9. Zuo, K. et al. Selective membranes in water and wastewater treatment: role of advanced materials. Mater. Today 50, 516–532 (2021).

    Article  CAS  Google Scholar 

  10. Lacan, P., Guizard, C., Le Gall, P., Wettling, D. & Cot, L. Facilitated transport of ions through fixed-site carrier membranes derived from hybrid organic–inorganic materials. J. Memb. Sci. 100, 99–109 (1995).

    Article  CAS  Google Scholar 

  11. Paltrinieri, L. et al. Hybrid polyelectrolyte-anion exchange membrane and its interaction with phosphate. React. Funct. Polym. 133, 126–135 (2018).

    Article  CAS  Google Scholar 

  12. Li, Y. et al. Facilitated transport of small molecules and ions for energy-efficient membranes. Chem. Soc. Rev. 44, 103–118 (2015).

    Article  Google Scholar 

  13. Ng, L. Y., Mohammad, A. W., Leo, C. P. & Hilal, N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308, 15–33 (2013).

    Article  CAS  Google Scholar 

  14. Kim, J. H., Won, J. & Kang, Y. S. Silver polymer electrolytes by π-complexation of silver ions with polymer containing C=C bond and their application to facilitated olefin transport membranes. J. Memb. Sci. 237, 199–202 (2004).

    Article  CAS  Google Scholar 

  15. Park, Y. S., Won, J. & Kang, Y. S. Facilitated transport of olefin through solid PAAm and PAAm–graft composite membranes with silver ions. J. Memb. Sci. 183, 163–170 (2001).

    Article  CAS  Google Scholar 

  16. Faiz, R. & Li, K. Olefin/paraffin separation using membrane based facilitated transport/chemical absorption techniques. Chem. Eng. Sci. 73, 261–284 (2012).

    Article  CAS  Google Scholar 

  17. Wu, H. et al. Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties. J. Memb. Sci. 465, 78–90 (2014).

    Article  CAS  Google Scholar 

  18. Cheng, Y. et al. Advanced porous materials in mixed matrix membranes. Adv. Mater. 30, 1802401 (2018).

  19. Li, Y. & Chung, T.-S. Novel Ag+-zeolite/polymer mixed matrix membranes with a high CO2/CH4 selectivity. Am. Inst. Chem. Eng. 53, 610–616 (2007).

    Article  CAS  Google Scholar 

  20. Zhang, M. et al. Synthesis of porous UiO-66-NH2-based mixed matrix membranes with high stability, flux and separation selectivity for Ga(III). Chem. Eng. J. 421, 129748 (2021).

    Article  CAS  Google Scholar 

  21. Li, X., Hill, M. R., Wang, H. & Zhang, H. Metal–organic framework‐based ion‐selective membranes. Adv. Mater. Technol. 6, 2000790 (2021).

  22. Zhao, Y. et al. Metal-organic framework based membranes for selective separation of target ions. J. Memb. Sci. 634, 119407 (2021).

    Article  CAS  Google Scholar 

  23. Zhang, H. et al. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci. Adv. 4, eaaq0066 (2018).

    Article  Google Scholar 

  24. Ramakrishnam Raju, M. V., Harris, S. M. & Pierre, V. C. Design and applications of metal-based molecular receptors and probes for inorganic phosphate. Chem. Soc. Rev. 49, 1090–1108 (2020).

    Article  CAS  Google Scholar 

  25. Acelas, N. Y., Martin, B. D., López, D. & Jefferson, B. Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media. Chemosphere 119, 1353–1360 (2015).

    Article  CAS  Google Scholar 

  26. Pan, B. et al. New strategy to enhance phosphate removal from water by hydrous manganese oxide. Environ. Sci. Technol. 48, 5101–5107 (2014).

    Article  CAS  Google Scholar 

  27. Fransiscus, Y., Widi, R. K., Aprilasti, G. O. & Yuharma, M. D. Adsorption of phosphate in aqueous solutions using manganese dioxide. Int. J. Adv. Sci. Eng. Inf. Technol. 8, 818–824 (2018).

    Article  Google Scholar 

  28. Yao, W. & Millero, F. J. Adsorption of phosphate on manganese dioxide in seawater. Environ. Sci. Technol. 30, 536–541 (1996).

    Article  CAS  Google Scholar 

  29. Kawashima, M., Tainaka, Y., Hori, T., Koyama, M. & Takamatsu, T. Phosphate adsorption onto hydrous manganese(iv) oxide in the presence of divalent cations. Water Res. 20, 471–475 (1986).

    Article  CAS  Google Scholar 

  30. Mustafa, S., Zaman, M. I. & Khan, S. Temperature effect on the mechanism of phosphate anions sorption by β-MnO2. Chem. Eng. J. 141, 51–57 (2008).

    Article  CAS  Google Scholar 

  31. Nesbitt, H. W. & Banerjee, D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am. Mineral. 83, 305–315 (1998).

    Article  CAS  Google Scholar 

  32. Yang, Z. et al. Vertically-aligned Mn(OH)2 nanosheet films for flexible all-solid-state electrochemical supercapacitors. J. Mater. Sci. Mater. Electron. 28, 17533–17540 (2017).

    Article  CAS  Google Scholar 

  33. Parikh, S. J. & Chorover, J. FTIR spectroscopic study of biogenic Mn-oxide formation by Pseudomonas putida GB-1. Geomicrobiol. J. 22, 207–218 (2005).

    Article  CAS  Google Scholar 

  34. Wang, X. & Andrews, L. Infrared spectra of M(OH)1,2,3 (M = Mn, Fe, Co, Ni) molecules in solid argon and the character of first row transition metal hydroxide bonding. J. Phys. Chem. A 110, 10035–10045 (2006).

    Article  CAS  Google Scholar 

  35. Stenina, I., Golubenko, D., Nikonenko, V. & Yaroslavtsev, A. Selectivity of transport processes in ion-exchange membranes: relationship with the structure and methods for its improvement. Int. J. Mol. Sci. 21, 5517 (2020).

    Article  CAS  Google Scholar 

  36. Jashni, E., Hosseini, S. M., Shen, J. N. & Van der Bruggen, B. Electrochemical characterization of mixed matrix electrodialysis cation exchange membrane incorporated with carbon nanofibers for desalination. Ionics 25, 5595–5610 (2019).

    Article  CAS  Google Scholar 

  37. Porozhnyy, M., Huguet, P., Cretin, M., Safronova, E. & Nikonenko, V. Mathematical modeling of transport properties of proton-exchange membranes containing immobilized nanoparticles. Int. J. Hydrogen Energy 41, 15605–15614 (2016).

    Article  CAS  Google Scholar 

  38. Zhang, B., Gao, H., Xiao, C., Tong, X. & Chen, Y. The trade-off between membrane permselectivity and conductivity: a percolation simulation of mass transport. J. Memb. Sci. 597, 117751 (2020).

    Article  CAS  Google Scholar 

  39. Kingsbury, R. S. & Coronell, O. Modeling and validation of concentration dependence of ion exchange membrane permselectivity: significance of convection and Manning’s counter-ion condensation theory. J. Memb. Sci. 620, 118411 (2020).

    Article  Google Scholar 

  40. Kononenko, N. et al. Porous structure of ion exchange membranes investigated by various techniques. Adv. Colloid Interface Sci. 246, 196–216 (2017).

    Article  CAS  Google Scholar 

  41. Lopez, M., Kipling, B. & Yeager, H. L. Ionic diffusion and selectivity of a cation exchange membrane in nonaqueous solvents. Anal. Chem. 49, 629–632 (1977).

    Article  CAS  Google Scholar 

  42. Rottiers, T., De la Marche, G., Van der Bruggen, B. & Pinoy, L. Co-ion fluxes of simple inorganic ions in electrodialysis metathesis and conventional electrodialysis. J. Memb. Sci. 492, 263–270 (2015).

    Article  CAS  Google Scholar 

  43. White, N., Misovich, M., Yaroshchuk, A. & Bruening, M. L. Coating of Nafion membranes with polyelectrolyte multilayers to achieve high monovalent/divalent cation electrodialysis selectivities. ACS Appl. Mater. Interfaces 7, 6620–6628 (2015).

    Article  CAS  Google Scholar 

  44. Hosseini, S. M., Jeddi, F., Nemati, M., Madaeni, S. S. & Moghadassi, A. R. Electrodialysis heterogeneous anion exchange membrane modified by PANI/MWCNT composite nanoparticles: preparation, characterization and ionic transport property in desalination. Desalination 341, 107–114 (2014).

    Article  CAS  Google Scholar 

  45. Su, Q. et al. Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters. Sci. Total Environ. 407, 5471–5477 (2009).

    Article  CAS  Google Scholar 

  46. Pan, B. C. et al. Highly effective removal of heavy metals by polymer-based zirconium phosphate: a case study of lead ion. J. Colloid Interface Sci. 310, 99–105 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the US Department of Agriculture (2017-67022-26135; D.J.) and the US Department of Energy (DOE) Chemical Sciences, Geosciences, and Biosciences Division under contract DE-AC02-05CH11231 (P.Z.).

Author information

Authors and Affiliations

Authors

Contributions

D.J. designed and supervised the study. A.I. designed the study, developed the material, performed the experiments, developed the mathematical model and prepared the manuscript. P.Z. developed the molecular dynamics simulations for this work. C.M.K. and S.M. assisted with the characterization and analysis of the developed material. R.K. assisted in the development of the mathematical model and provided the source code for Donnan exclusion calculations. J.W. assisted in the development of the mathematical model. E.M.V.H., I.W. and Z.J.R. contributed to the editing of the manuscript and data analysis.

Corresponding author

Correspondence to David Jassby.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Qilin Li, Sukalyan Sengupta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, equations 1–26, Tables 1–3 and Sections 1 and 2.

Source data

Source Data Fig. 1

XPS and FTIR data for membrane characterization.

Source Data Fig. 2

Data files for concentration, pH and separation factor.

Source Data Fig. 4

Data files for flux and transport number.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iddya, A., Zarzycki, P., Kingsbury, R. et al. A reverse-selective ion exchange membrane for the selective transport of phosphates via an outer-sphere complexation–diffusion pathway. Nat. Nanotechnol. 17, 1222–1228 (2022). https://doi.org/10.1038/s41565-022-01209-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01209-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing