Skip to main content

Advertisement

Log in

Projected future changes in equatorial wave spectrum in CMIP6

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The simulation of the Madden–Julian Oscillation (MJO) and convectively coupled equatorial waves (CCEWs) is considered in 13 state-of-the-art models from phase 6 of the Coupled Model Intercomparison Project (CMIP6). We use frequency–wavenumber power spectra of the models and observations for Outgoing Longwave Radiation (OLR) and zonal winds at 250 hPa (U250), and consider the historical simulations and end of twenty-first century projections for the SSP245 and SSP585 scenarios. The models simulate a spectrum quantitatively resembling that observed, though systematic biases exist. MJO and Kelvin waves (KW) are mostly underestimated, while equatorial Rossby waves (ER) are overestimated. Most models project a future increase in power spectra for the MJO, while nearly all project a robust increase for KW and weaker power values for most other wavenumber–frequency combinations, including higher wavenumber ER. In addition to strengthening, KW also shift toward higher phase speeds (or equivalent depths). Models with a more realistic MJO in their control climate tend to simulate a stronger future intensification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available in the ESGF repository, https://esgf-node.llnl.gov/projects/cmip6/.

References

  • Ahn MS, Kim D, Sperber KR, Kang IS, Maloney E, Waliser D, Hendon H (2017) MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis. Clim Dyn 49(11):4023–4045

    Google Scholar 

  • Ahn MS, Kim D, Kang D, Lee J, Sperber KR, Gleckler PJ, Jiang X, Ham YG, Kim H (2020) MJO propagation across the maritime continent: are CMIP6 models better than CMIP5 models? Geophys Res Lett 47(11):e2020GL087,250

    Google Scholar 

  • Allan RP, Barlow M, Byrne MP, Cherchi A, Douville H, Fowler HJ, Gan TY, Pendergrass AG, Rosenfeld D, Swann AL et al (2020) Advances in understanding large-scale responses of the water cycle to climate change. Ann NY Acad Sci 1472(1):49–75

    Google Scholar 

  • Arnold NP, Branson M, Kuang Z, Randall DA, Tziperman E (2015) MJO intensification with warming in the superparameterized CESM. J Clim 28(7):2706–2724

    Google Scholar 

  • Bui HX, Maloney ED (2019) Transient response of MJO precipitation and circulation to greenhouse gas forcing. Geophys Res Lett 46(22):13,546–13,555

    Google Scholar 

  • Chang CWJ, Tseng WL, Hsu HH, Keenlyside N, Tsuang BJ (2015) The Madden–Julian oscillation in a warmer world. Geophys Res Lett 42(14):6034–6042

    Google Scholar 

  • Danabasoglu G, Lamarque JF, Bacmeister J, Bailey D, DuVivier A, Edwards J, Emmons L, Fasullo J, Garcia R, Gettelman A et al (2020) The community earth system model version 2 (CESM2). J Adv Model Earth Syst 12(2):e2019MS001916

    Google Scholar 

  • De-Leon Y, Garfinkel CI, Paldor N (2022) Waves on the equatorial \(\beta\)-plane in the presence of a uniform zonal flow: beyond the doppler shift. Phys Fluids 34(4):046603

    Google Scholar 

  • Döscher R, Acosta M, Alessandri A, Anthoni P, Arneth A, Arsouze T, Bergmann T, Bernadello R, Bousetta S, Caron LP et al (2021) The EC-Earth3 earth system model for the climate model intercomparison project 6. Geosci Model Dev Discuss 1:2021

    Google Scholar 

  • Dunne J, Horowitz L, Adcroft A, Ginoux P, Held I, John J, Krasting J, Malyshev S, Naik V, Paulot F et al (2020) The GFDL earth system model version 4.1 (GFDL-ESM 4.1): overall coupled model description and simulation characteristics. J Adv Model Earth Syst 12(11):e2019MS002,015

    Google Scholar 

  • Frierson DM (2007) Convectively coupled Kelvin waves in an idealized moist general circulation model. J Atmos Sci 64(6):2076–2090

    Google Scholar 

  • Frierson DM, Kim D, Kang IS, Lee MI, Lin J (2011) Structure of AGCM-simulated convectively coupled Kelvin waves and sensitivity to convective parameterization. J Atmos Sci 68(1):26–45

    Google Scholar 

  • Garfinkel CI, Fouxon I, Shamir O, Paldor N (2017) Classification of eastward propagating waves on the spherical earth. Q J R Meteorol Soc 143(704):1554–1564

    Google Scholar 

  • Garfinkel CI, Shamir O, Fouxon I, Paldor N (2021) Tropical background and wave spectra: contribution of wave–wave interactions in a moderately nonlinear turbulent flow. J Atmos Sci 78(6):1773–1789

    Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699

    Google Scholar 

  • Hendon HH, Wheeler MC (2008) Some space-time spectral analyses of tropical convection and planetary-scale waves. J Atmos Sci 65(9):2936–2948

    Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, De Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan RJ, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, de Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut JN (2020) The ERA5 global reanalysis. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  • Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38(6):1179–1196

    Google Scholar 

  • Huang P, Chou C, Huang R (2013) The activity of convectively coupled equatorial waves in CMIP3 global climate models. Theor Appl Climatol 112(3):697–711

    Google Scholar 

  • Hung MP, Lin JL, Wang W, Kim D, Shinoda T, Weaver SJ (2013) MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J Clim 26(17):6185–6214

    Google Scholar 

  • Jenney AM, Randall DA, Barnes EA (2021) Drivers of uncertainty in future projections of Madden–Julian oscillation teleconnections. Weather Clim Dyn 2(3):653–673

    Google Scholar 

  • Jiang X, Waliser DE, Xavier PK, Petch J, Klingaman NP, Woolnough SJ, Guan B, Bellon G, Crueger T, DeMott C et al (2015) Vertical structure and physical processes of the Madden–Julian oscillation: exploring key model physics in climate simulations. J Geophys Res Atmos 120(10):4718–4748

    Google Scholar 

  • Jiang X, Adames ÁF, Kim D, Maloney ED, Lin H, Kim H, Zhang C, DeMott CA, Klingaman NP (2020) Fifty years of research on the Madden–Julian oscillation: recent progress, challenges, and perspectives. J Geophys Res Atmos 125(17):e2019JD030,911

    Google Scholar 

  • Kiladis GN, Wheeler MC, Haertel PT, Straub KH, Roundy PE (2009) Convectively coupled equatorial waves. Rev Geophys 47(2):1–42. https://doi.org/10.1029/2008RG000266

    Article  Google Scholar 

  • Le PV, Guilloteau C, Mamalakis A, Foufoula-Georgiou E (2021) Underestimated MJO variability in CMIP6 models. Geophys Res Lett 48(12):e2020GL092,244

    Google Scholar 

  • Li L, Yu Y, Tang Y, Lin P, Xie J, Song M, Dong L, Zhou T, Liu L, Wang L et al (2020) The flexible global ocean–atmosphere-land system model grid-point version 3 (FGOALS-G3): description and evaluation. J Adv Model Earth Syst 12(9):e2019MS002,012

    Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77(6):1275–1277

    Google Scholar 

  • Lin JL, Kiladis GN, Mapes BE, Weickmann KM, Sperber KR, Lin W, Wheeler MC, Schubert SD, Del Genio A, Donner LJ et al (2006) Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part i: Convective signals. J Clim 19(12):2665–2690

    Google Scholar 

  • Liu P, Li T, Wang B, Zhang M, Luo Jj, Masumoto Y, Wang X, Roeckner E (2013) MJO change with A1B global warming estimated by the 40-km ECHAM5. Clim Dyn 41(3):1009–1023

    Google Scholar 

  • Madden RA, Julian PR (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci 29(6):1109–1123

    Google Scholar 

  • Maloney ED, Adames ÁF, Bui HX (2019) Madden–Julian oscillation changes under anthropogenic warming. Nat Clim Chang 9(1):26–33

    Google Scholar 

  • Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteorol Soc Jpn Ser II 44(1):25–43

    Google Scholar 

  • Mauritsen T, Bader J, Becker T, Behrens J, Bittner M, Brokopf R, Brovkin V, Claussen M, Crueger T, Esch M et al (2019) Developments in the MPI-M earth system model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J Adv Model Earth Syst 11(4):998–1038

    Google Scholar 

  • Meinshausen M, Nicholls ZR, Lewis J, Gidden MJ, Vogel E, Freund M, Beyerle U, Gessner C, Nauels A, Bauer N et al (2020) The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci Model Dev 13(8):3571–3605

    Google Scholar 

  • Müller WA, Jungclaus JH, Mauritsen T, Baehr J, Bittner M, Budich R, Bunzel F, Esch M, Ghosh R, Haak H et al (2018) A higher-resolution version of the max Planck institute earth system model (MPI-ESM1. 2-hr). J Adv Model Earth Syst 10(7):1383–1413

    Google Scholar 

  • Paldor N (2015) Shallow water waves on the rotating Earth. Springer, Berlin

    Google Scholar 

  • Paldor N, De-Leon Y, Shamir O (2013) Planetary (Rossby) waves and inertia-gravity (Poincaré) waves in a barotropic ocean over a sphere. J Fluid Mech 726:123–136

    Google Scholar 

  • Raghavendra A, Roundy PE, Zhou L (2019) Trends in tropical wave activity from the 1980s to 2016. J Clim 32(5):1661–1676

    Google Scholar 

  • Rao J, Garfinkel CI, Chen H, White IP (2019) The 2019 new year stratospheric sudden warming and its real-time predictions in multiple S2S models. J Geophys Res Atmos 124(21):11,155-11,174

    Google Scholar 

  • Rao J, Garfinkel CI, White IP, Schwartz C (2020) The southern hemisphere minor sudden stratospheric warming in September 2019 and its predictions in S2S models. J Geophys Res Atmos 125(14):e2020JD032,723

    Google Scholar 

  • Rao J, Garfinkel CI, Wu T, Lu Y, Lu Q, Liang Z (2021) The January 2021 sudden stratospheric warming and its prediction in subseasonal to seasonal models. J Geophys Res Atmos 126(21):e2021JD035057

    Google Scholar 

  • Roundy PE (2008) Analysis of convectively coupled Kelvin waves in the Indian ocean MJO. J Atmos Sci 65(4):1342–1359

    Google Scholar 

  • Roundy PE (2012) The spectrum of convectively coupled Kelvin waves and the Madden–Julian oscillation in regions of low-level easterly and westerly background flow. J Atmos Sci 69(7):2107–2111

    Google Scholar 

  • Roundy PE (2020a) The association between the phase speed of the Madden–Julian oscillation and atmospheric circulation. In: The multiscale global monsoon system. World Scientific, pp 301–314

  • Roundy PE (2020b) Interpretation of the spectrum of eastward-moving tropical convective anomalies. Q J R Meteorol Soc 146(727):795–806

    Google Scholar 

  • Samarasinghe SM, Connolly C, Barnes EA, Ebert-Uphoff I, Sun L (2021) Strengthened causal connections between the MJO and the north Atlantic with climate warming. Geophys Res Lett 48(5):e2020GL091,168

    Google Scholar 

  • Sardeshmukh PD, Hoskins BJ (1988) The generation of global rotational flow by steady idealized tropical divergence. J Atmos Sci 45(7):1228–1251

    Google Scholar 

  • Schwartz C, Garfinkel CI (2020) Troposphere-stratosphere coupling in subseasonal-to-seasonal models and its importance for a realistic extratropical response to the Madden–Julian oscillation. J Geophys Res Atmos 125(10):e2019JD032,043

    Google Scholar 

  • Séférian R, Nabat P, Michou M, Saint-Martin D, Voldoire A, Colin J, Decharme B, Delire C, Berthet S, Chevallier M et al (2019) Evaluation of CNRM earth system model, CNRM-ESM2-1: role of earth system processes in present-day and future climate. J Adv Model Earth Syst 11(12):4182–4227

    Google Scholar 

  • Sellar AA, Jones CG, Mulcahy JP, Tang Y, Yool A, Wiltshire A, O’Connor FM, Stringer M, Hill R, Palmieri J, Woodward S, de Mora L, Kuhlbrodt T, Rumbold ST, Kelley DI, Ellis R, Johnson CE, Walton J, Abraham NL, Andrews MB, Andrews T, Archibald AT, Berthou S, Burke E, Blockley E, Carslaw K, Dalvi M, Edwards J, Folberth GA, Gedney N, Griffiths PT, Harper AB, Hendry MA, Hewitt AJ, Johnson B, Jones A, Jones CD, Keeble J, Liddicoat S, Morgenstern O, Parker RJ, Predoi V, Robertson E, Siahaan A, Smith RS, Swaminathan R, Woodhouse MT, Zeng G, Zerroukat M (2019) UKESM1: description and evaluation of the U.K. earth system model. J Adv Model Earth Syst 11(12):4513–4558. https://doi.org/10.1029/2019MS001739

  • Seo KH, Lee HJ (2017) Mechanisms for a PNA-like teleconnection pattern in response to the MJO. J Atmos Sci 74(6):1767–1781

    Google Scholar 

  • Seo KH, Choi JH, Han SD (2012) Factors for the simulation of convectively coupled Kelvin waves. J Clim 25(10):3495–3514

    Google Scholar 

  • Shamir O, Schwartz C, Garfinkel CI, Paldor N (2021) The power distribution between symmetric and antisymmetric components of the tropical wavenumber-frequency spectrum. J Atmos Sci 78(6):1983–1998

    Google Scholar 

  • Stan C, Zheng C, Chang EKM, Domeisen DI, Garfinkel CI, Jenney AM, Kim H, Lim YK, Lin H, Robertson A et al (2022) Advances in the prediction of MJO-teleconnections in the S2S forecast systems. Bull Am Meteorol Soc

  • Straub KH, Kiladis GN (2002) Observations of a convectively coupled kelvin wave in the eastern Pacific ITCZ. J Atmos Sci 59(1):30–53

    Google Scholar 

  • Tatebe H, Ogura T, Nitta T, Komuro Y, Ogochi K, Takemura T, Sudo K, Sekiguchi M, Abe M, Saito F et al (2019) Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in miroc6. Geosci Model Dev 12(7):2727–2765

    Google Scholar 

  • Tian B, Ramanathan V (2003) A simple moist tropical atmosphere model: the role of cloud radiative forcing. J Clim 16(12):2086–2092

    Google Scholar 

  • Tulich S, Kiladis G (2021) On the regionality of moist Kelvin waves and the MJO: the critical role of the background zonal flow. J Adv Model Earth Syst 13(9):e2021MS002,528

    Google Scholar 

  • Vitart F (2017) Maddenjulian oscillation prediction and teleconnections in the S2S database. Q J R Meteorol Soc 143(706):2210–2220

    Google Scholar 

  • Voldoire A, Saint-Martin D, Sénési S, Decharme B, Alias A, Chevallier M, Colin J, Guérémy JF, Michou M, Moine MP et al (2019) Evaluation of CMIP6 deck experiments with CNRM-CM6-1. J Adv Model Earth Syst 11(7):2177–2213

    Google Scholar 

  • Volodin E, Mortikov E, Kostrykin S, Galin VY, Lykossov V, Gritsun A, Diansky N, Gusev A, Iakovlev N (2017) Simulation of the present-day climate with the climate model INMCM5. Clim Dyn 49(11):3715–3734

    Google Scholar 

  • Wang L, Li T (2017) Convectively coupled Kelvin waves in CMIP5 coupled climate models. Clim Dyn 48(3–4):767–781

    Google Scholar 

  • Wheeler M, Kiladis GN (1999) Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber–frequency domain. J Atmos Sci 56(3):374–399

    Google Scholar 

  • Wu T, Lu Y, Fang Y, Xin X, Li L, Li W, Jie W, Zhang J, Liu Y, Zhang L et al (2019) The Beijing climate center climate system model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci Model Dev 12(4):1573–1600

    Google Scholar 

  • Yang GY, Hoskins B, Slingo J (2007) Convectively coupled equatorial waves. Part II: propagation characteristics. J Atmos Sci 64(10):3424–3437

    Google Scholar 

  • Yoo C, Lee S, Feldstein SB (2012) Mechanisms of arctic surface air temperature change in response to the Madden–Julian oscillation. J Clim 25(17):5777–5790

    Google Scholar 

  • Zhang C (2005) Madden–Julian oscillation. Rev Geophys 43(2):1–36. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2004RG000158

Download references

Acknowledgements

Interpolated OLR data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their Web site at https://psl.noaa.gov/data/gridded/data.interp_OLR.html. CMIP6 data is available from the ESGF website at https://esgf-node.llnl.gov/projects/cmip6/. The authors thank Paul Roundy and the two anonymous reviewers for their constructive comments.

Funding

C. I. G. and H. B. are supported by the ISF-NSFC joint research program (Grant No. 3259/19) and by the European Research Council starting grant under the European Union’s Horizon 2020 research and innovation program (Grant Agreement 677756). J. R. is supported by the National Natural Science Foundation of China (42175069). The authors have no competing interests to declare that are relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaim I. Garfinkel.

Ethics declarations

Competing interests

All authors contributed to the study conception and design. Material preparation and data were provided by Jian Rao and Ofer Shamir. Ofer Shamir began the data analysis, and Hagar Bartana performed most of the data analysis. Chaim Garfinkel oversaw the project. The first draft of the manuscript was written by Hagar Bartana and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 94 KB)

Supplementary file 2 (pdf 3538 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartana, H., Garfinkel, C.I., Shamir, O. et al. Projected future changes in equatorial wave spectrum in CMIP6. Clim Dyn 60, 3277–3289 (2023). https://doi.org/10.1007/s00382-022-06510-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06510-y

Keywords

Navigation