Skip to main content
Log in

On Non-Empty Cross-Intersecting Families

  • Original paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

Let 2[n] and (\(\matrix{{\left[ n \right]} \cr i \cr } \)) be the power set and the collection of all i-subsets of {1, 2, …, n}, respectively. We call t (t ≥ 2) families \({{\cal A}_1},{{\cal A}_2}, \ldots ,{{\cal A}_t} \subseteq {2^{\left[ n \right]}}\) cross-intersecting if AiAj ≠ ∅ for any \({A_i} \in {{\cal A}_i}\) and \({A_j} \in {{\cal A}_j}\) with ij. We show that, for nk +l, lr ≥ 1, c > 0 and \({\cal A} \subseteq \left( {\matrix{{\left[ n \right]} \cr k \cr } } \right),{\cal B} \subseteq \left( {\matrix{{\left[ n \right]} \cr l \cr } } \right)\), if \({\cal A}\) and \({\cal B}\) are cross-intersecting and \(\left( {\matrix{{n - r} \cr {l - r} \cr } } \right) \le \left| {\cal B} \right| \le \left( {\matrix{{n - 1} \cr {l - 1} \cr } } \right)\), then

$$\left| {\cal A} \right| + c\left| {\cal B} \right| \le \max \left\{ {\left( {\matrix{n \cr k \cr } } \right) - \left( {\matrix{{n - r} \cr k \cr } } \right) + c\left( {\matrix{{n - r} \cr {l - r} \cr } } \right),\left( {\matrix{{n - 1} \cr {k - 1} \cr } } \right) + c\left( {\matrix{{n - 1} \cr {l - 1} \cr } } \right)} \right\}.$$

This implies a result of Tokushige and the second author (Theorem 3.1) and also yields that, for n ≥ 2k, if \({{\cal A}_1},{{\cal A}_2}, \ldots ,{{\cal A}_t} \subseteq \left( {\matrix{{\left[ n \right]} \cr k \cr } } \right)\) are non-empty cross-intersecting, then

$$\sum\limits_{i = 1}^t {\left| {{{\cal A}_i}} \right| \le \max \left\{ {\left( {\matrix{n \cr k \cr } } \right) - \left( {\matrix{{n - k} \cr k \cr } } \right) + t - 1,\,\,t\left( {\matrix{{n - 1} \cr {k - 1} \cr } } \right)} \right\},} $$

which generalizes the corresponding result of Hilton and Milner for t = 2. Moreover, the extremal families attaining the two upper bounds above are also characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Ahlswede and L. H. Khachatrian: The complete intersection theorem for systems of finite sets, European J. Combin. 18 (1997), 125–136.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Borg: A short proof of a cross-intersection theorem of Hilton, Discrete Math. 309 (2009), 4750–4753.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Erdős, C. Ko and R. Rado: Intersection theorems for systems of finite sets, Quart. J. Math. Oxf. 2 (1961), 313–320.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Frankl: An ErdŐs-Ko-Rado theorem for direct products, European J. Combin. 17 (1996), 727–730.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Frankl: Old and new applications of Katonas circle, European J. Combin. 95 (2021), 103339.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Frankl: A. Kupavskii, Uniform s-cross-intersecting families, Combinatorics, Probability & Computing 26 (2017), 517–524.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Frankl and A. Kupavskii: Sharp results concerning disjoint cross-intersecting families, European J. Combin 86 (2020), 103089.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Frankl and N. Tokushige: Some best possible inequalities concerning cross-intersecting families, J. Combin. Theory Ser. A 61 (1992), 87–97.

    Article  MathSciNet  MATH  Google Scholar 

  9. Z. Füredi: Cross-intersecting families of finite sets, J. Combin. Theory Ser. A 72 (1995), 332–339.

    Article  MathSciNet  MATH  Google Scholar 

  10. Z. Füredi and J. R. Griggs: Families of finite sets with minimum shadows, Combinatorica 6 (1986), 355–363.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Gupta, Y. Mogge, S. Piga and B. Schülke: r-cross t-intersecting families via necessary intersetion points, arXiv:2010.11928v2.

  12. A. J. W. Hilton: An intersection theorem for a collection of families of subsets of a finite set, J. London Math. Soc. 2 (1977), 369–376.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. J. W. Hilton: The ErdŐs-Ko-Rado theorem with valency conditions, Unpublished Manuscript, 1976.

  14. A. J. W. Hilton and E. C. Milner: Some intersection theorems for systems of finite sets, Quart. J. Math. Oxf. 2 (1967), 369–384.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. O. H. Katona: A theorem of finite sets, in: Theory of Graphs, Proc. Colloq. Tihany, Akadémai Kiadó, 187–207, 1968.

  16. X. L. Kong, Y. X. Xi and G. N. Ge: Multi-part cross-intersecting families, preprint, arXiv:1809.08756.

  17. J. B. Kruskal: The number of simplices in a complex, in: Math. Opt. Techniques, Univ. of Calif. Press, 251–278, 1963.

  18. M. Kwan, B. Sudakov and P. Vieira: Non-trivially intersecting multi-part families, J. Combin. Theory Ser. A 156 (2018), 44–60.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Mörs: A generalization of a theorem of Kruskal, Graphs and Combinatorics 1 (1985), 167–183.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Wang and H. Zhang: Nontrivial independent sets of bipartite graphs and cross-intersecting families, J. Combin. Theory Ser. A 120 (2013), 129–141.

    Article  MathSciNet  MATH  Google Scholar 

  21. W. H. W. Wong and E. G. Tay: On cross-intersecting Sperner Families, preprint, arXiv:2001.01910.

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their constructive suggestions. This research was partially supported by the National Natural Science Foundation of China [Grant number, 11971406].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Frankl, P. & Qian, J. On Non-Empty Cross-Intersecting Families. Combinatorica 42 (Suppl 2), 1513–1525 (2022). https://doi.org/10.1007/s00493-021-4839-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-021-4839-4

Mathematics Subject Classification (2010)

Navigation