Skip to main content
Log in

2D Material-Based Photo- and Nanoelectronics. Part III. Photosensors Based on Graphene, Graphene-Like, and Related 2D Nanomaterials

  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

We review the photosignal formation mechanisms, architecture, and main parameters of photosensors based on group-III, IV, V, and VI monoatomic 2D materials, specifically, graphene and graphene-like materials, silicene, germanene, black phosphorus, black phosphorus‒arsenic solid solutions, antimonene, bismuthene, tellurene, borophene, and heterostructures containing 2D materials, including those combined with other low-dimensional materials, as well as photosensors with plasmonic nanoantennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

REFERENCES

  1. V. P. Ponomarenko, Quantum Photosensitivity (Orion R&P Association, Moscow, 2018) [in Russian].

    Google Scholar 

  2. V. P. Ponomarenko, I. D. Burlakov, V. S. Popov, and S. V. Popov, Successes of Infrared Photosensory (Orion R&P Association, Moscow, 2021) [in Russian].

    Google Scholar 

  3. F. Xia et al., Nat. Photonics 8, 899 (2014).

    Article  Google Scholar 

  4. V. P. Ponomarenko, V. S. Popov, S. V. Popov, and E. L. Chepurnov, J. Commun. Technol. Electron. 65, 1062 (2020).

    Article  Google Scholar 

  5. V. P. Ponomarenko, V. S. Popov, and S. V. Popov, J. Commun. Technol. Electron. 66, 1108 (2021).

    Article  Google Scholar 

  6. N. R. Glavin, R. Rao, V. Varshney, E. Bianco, A. Apte, A. Roy, E. Ringe, and P. M. Ajayan, Adv. Mater. 32, 1904302 (2020).

    Article  Google Scholar 

  7. Z. Huang, X. Qi, and J. Zhong, 2D Monoelemental Materials (Xenes) and Related Technologies (CRC, Boca Raton, 2022).

    Book  Google Scholar 

  8. S. P. Gubin and S. V. Tkachev, Graphene and Related Carbon Materials (URSS, Moscow, 2019) [in Russian].

    Google Scholar 

  9. F. Xia, H. Wang, and Ys. Jia, Nat. Commun, 5 (1), 4458 (2014).

    Article  Google Scholar 

  10. N. Youngblood, C. Chen, S. J. Koester, and M. Li, Nat. Photonics, 9 (4), 247 (2015).

    Article  Google Scholar 

  11. S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo, Y. Ma, A. Abbas, B. Liu, R. Haiges, C. Ott, T. Nilges, K. Watanabe, T. Taniguchi, O. Sinai, D. Naveh, C. Zhou, and F. Xia, Nano Lett. 18 (5), 3172 (2018).

    Article  Google Scholar 

  12. M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, Sci. Adv. 3 (6), e1700589 (2017).

    Article  Google Scholar 

  13. J. Du, H. Yu, B. Liu, M. Hong, Q. Liao, Z. Zhang, and Y. Zhang, Small Methods 5 (1), 2000919 (2021).

    Article  Google Scholar 

  14. X. Guan, X. Yu, D. Periyanagounder, M. R. Benzigar, J. Huang, C. Lin, J. Kim, S. Singh, L. Hu, G. Liu, D. Li, J. He, F. Yan, Q. J. Wang, and T. Wu, Adv. Opt. Mater. 9, 2001708 (2021).

    Article  Google Scholar 

  15. Y. Fang et al., Nat. Photonics 13 (1), 1 (2019).

    Article  Google Scholar 

  16. D. Kufer and G. Konstantatos, ACS Photonics 3, 2197 (2016).

    Article  Google Scholar 

  17. A. K. Geim and K. S. Novoselov, Nat. Mater. 6 (3), 183 (2007).

    Article  Google Scholar 

  18. F. Wang et al., Science 320 (5873), 206 (2008).

    Article  Google Scholar 

  19. F. Xia et al., Nat. Nanotechnol., 4 (12), 839 (2009).

    Article  Google Scholar 

  20. F. Xia H. Wang, and Y. Jia, Nat. Commun. 5, 4458 (2014).

    Article  Google Scholar 

  21. T. Low et al., Phys. Rev. B. 90, 081408 (2014).

    Article  Google Scholar 

  22. J. Park et al., Nano Converg, 6 (1), 32 (2019).

    Article  Google Scholar 

  23. S.-L. Li et al., ACS Nano 13, 2654 (2019).

    Google Scholar 

  24. Zhong F. et al., Nano Res. 14, 1840 (2021).

    Article  Google Scholar 

  25. A. K. Geim and I. V. Grigorieva, Nature 499 (7459), 419 (2013).

    Article  Google Scholar 

  26. D. Jariwala, T. J. Marks, and M. C. Hersam, Nat. Mater. 16 (2), 170 (2017).

    Article  Google Scholar 

  27. D. K. Bediako et al., Nature 558 (7710), 425 (2018).

    Article  Google Scholar 

  28. K. S. Novoselov et al., Science 353 (6298), aac9439 (2016).

    Article  Google Scholar 

  29. R. R. Nair et al., Science 320 (5881), 1308 (2008).

    Article  Google Scholar 

  30. E. J. H. Lee et al., Nat. Nanotechnol. 3 (8), 486 (2008).

    Article  Google Scholar 

  31. T. Mueller et al., Phys. Rev. B. 79, 245430 (2009).

    Article  Google Scholar 

  32. G. Giovannetti, et al., Phys. Rev. Lett. 101 (2), 4 (2008).

    MathSciNet  Google Scholar 

  33. X. Xu et al., Nano Lett. 10 (2), 562 (2010).

    Article  Google Scholar 

  34. T. Mueller, F. Xia, and P. Avouris, Nat. Photonics 4, 297 (2010).

    Article  Google Scholar 

  35. F. Xia et al., Nano Lett. 10 (2), 715 (2010).

    Article  Google Scholar 

  36. M. C. Lemme et al., Nano Lett. 11 (10), 4134 (2011).

    Article  Google Scholar 

  37. E. C. Peters et al., Appl. Phys. Lett. 97 (19), 193102 (2010).

    Article  Google Scholar 

  38. S. Du, et al., Adv. Mater. 29 (22), 1700463 (2017).

    Article  Google Scholar 

  39. R. Bistritzer and A. H. MacDonald, Phys. Rev. Lett. 102 (20), 206410 (2009).

    Article  Google Scholar 

  40. Y. Liu et al., Nat. Commun. 2 (1), 579 (2011).

    Article  Google Scholar 

  41. D. Sun et al., Nat. Nanotechnol. 7 (2), 114 (2012).

    Article  Google Scholar 

  42. P. A. Obraztsov et al., Sci. Rep. 4 (1), 4007 (2015).

    Article  Google Scholar 

  43. P. A. Obraztsov et al., ACS Photonics 6 (7), 1780 (2019).

    Article  Google Scholar 

  44. Z. Fang et al., Nano Lett. 12 (7), 3808 (2012).

    Article  Google Scholar 

  45. J. Lee et al., Nat. Nanotechnol. 6 (6), 348 (2011).

    Article  Google Scholar 

  46. G. Konstantatos, et al., Nat. Nanotechnol. 7 (6), 363 (2012).

    Article  Google Scholar 

  47. Z. Ni et al., ACS Nano 11 (10), 9854 (2017).

    Article  Google Scholar 

  48. X. Yu et al., Nat. Commun. Springer US 9 (1), 4299 (2018).

    Article  Google Scholar 

  49. K. Murali et al., ACS Appl. Mater. Interfaces Am. Chem. Soc. 11 (33), 30010 (2019).

    Article  Google Scholar 

  50. M. Alamri et al., ACS Appl. Mater. Interfaces 11 (36), 33390 (2019).

    Article  Google Scholar 

  51. Z. Chen et al., Nano Res. 12 (8), 1888 (2019).

    Article  Google Scholar 

  52. M. Casalino et al., ACS Nano 11 (11), 10955 (2017).

    Article  Google Scholar 

  53. C. H. Yeh et al., ACS Appl. Mater. Interfaces 9 (41), 36181 (2017).

    Article  Google Scholar 

  54. R. J. Chang et al., ACS Appl. Mater. Interfaces 10 (15), 13002 (2018).

    Article  Google Scholar 

  55. Q. Lu et al., Materials (Basel) 12 (16), 2532 (2019).

    Article  Google Scholar 

  56. J. Kim et al., ACS Photonics 4, 482 (2017).

    Article  Google Scholar 

  57. Z. He et al., Appl. Phys. Lett. AIP Publishing LLC 119 (23), 232104 (2021).

    Article  Google Scholar 

  58. H. Xu et al., Small, 10 (11), 2300 (2014).

    Article  Google Scholar 

  59. Y. Liu et al., Sci. Rep. Springer US 8 (1), 12840 (2018).

    Google Scholar 

  60. W. Guo et al., Small 9 (18), 3031 (2013).

    Article  Google Scholar 

  61. C. Lee et al., Sci. Rep. 5 (1), 10013 (2015).

    Article  Google Scholar 

  62. B. Y. Zhang et al., Nat. Commun. 4 (1), 1811 (2013).

    Article  Google Scholar 

  63. I. Nikitskiy et al., Nat. Commun. 7 (1), 11954 (2016).

    Article  Google Scholar 

  64. Z. Sun et al., Adv. Mater. 24 (43), 5878 (2012).

    Article  Google Scholar 

  65. S. Lloyd, “Advances in Detectors: Graphene photodetectors advance with help from collective EU Flagship,” Laser Focus World (07.10.2017). https://www.laserfocusworld.com/detectors-imaging/article/16548220/ advances-in-detectors-graphene-photodetectors-advance-with-help-from-collective-eu-flagship.

  66. S. Goossens, et al., Nat. Photonics. Nature Publishing Group 11 (6), 366 (2017).

    Google Scholar 

  67. Emberion – Company [Electronic resource]. (2022). URL: https://www.emberion.com/company/.

  68. M. Allen, A. Bessonov, and T. Ryhanen, SID Symp. Dig. Tech. Pap. 52 (1), 987 (2021).

    Article  Google Scholar 

  69. C. Lee et al., Jpn. J. Appl. Phys., 54 (6S1), 06FF08 (2015).

  70. N. Prakash et al., Appl. Phys. Lett. 109 (24), 242102 (2016).

    Article  Google Scholar 

  71. H. Tian et al., Appl. Phys. Lett. 113 (12), 121109 (2018).

    Article  Google Scholar 

  72. K. Roy et al., Nat. Nanotechnol. 8 (11), 826 (2013).

    Article  Google Scholar 

  73. W. J. Yu et al., Nat. Nanotechnol. 8 (12), 952 (2013).

    Article  Google Scholar 

  74. K. H. Lee et al., Adv. Mater. 28 (9), 1793 (2016).

    Article  Google Scholar 

  75. M. Massicotte et al., Nat. Nanotechnol. 11 (1), 42 (2016).

    Article  Google Scholar 

  76. A. Parbatani et al., Nanotechnology 30, 165201 (2019).

    Article  Google Scholar 

  77. P. Vogt et al., Phys. Rev. Lett. 108, 155501 (2012).

    Article  Google Scholar 

  78. M. A. Kharadi et al., ECS J. Solid State Sci. Technol, 9 (11), 115031 (2020).

    Article  Google Scholar 

  79. M. A. Kharadi et al., Int. J. Numer. Model. Electron. Networks, Devices Fields. 34 (1), 1 (2021).

    Google Scholar 

  80. M. A. Kharadi et al., IEEE Trans. Electron Devices 68 (1), 138 (2021).

    Article  Google Scholar 

  81. R. Gonzalez-Rodriguez, et al., ACS Appl. Nano Mater. 5 (3), 4325 (2022), https://doi.org/10.1021/acsanm.2c00337

    Article  Google Scholar 

  82. E. Bianco et al., ACS Nano 7 (5), 4414 (2013).

    Article  Google Scholar 

  83. N. Liu et al., Small, 16 (23), 2000283 (2020).

    Article  Google Scholar 

  84. C. Li et al., J. Mater. Chem. C 8 (46), 16318 (2020).

    Article  Google Scholar 

  85. G. Tai et al., Nanotechnology 32, 505606 (2021).

    Article  Google Scholar 

  86. Z. Wu et al., ACS Appl. Mater. Interfaces 13 (27), 31808 (2021).

    Article  Google Scholar 

  87. R. J. Suess et al., 2D Mater. 3, 041006 (2016).

  88. L. Huang et al., ACS Appl. Mater. Interfaces 9 (41), 36130 (2017).

    Article  Google Scholar 

  89. F. Gong et al., Phys. Status Solidi – Rapid Res. Lett. 12 (12), 1800310 (2018).

    Article  Google Scholar 

  90. J. Bullock et al., Nat. Photonics 12, 601 (2018).

    Article  Google Scholar 

  91. Z. Dang et al., 2D Mater. 8, 035002 (2021).

  92. L. Tong et al., Nat. Commun. 11 (1), 2308 (2020).

    Article  Google Scholar 

  93. X. Ling et al., Proc. Natl. Acad. Sci. 112 (15), 4523 (2015).

    Article  Google Scholar 

  94. A. Castellanos-Gomez, J. Phys. Chem. Lett. 6 (21), 4280 (2015).

    Article  Google Scholar 

  95. M. Amani et al., ACS Nano 11 (11), 11724 (2017).

    Article  Google Scholar 

  96. J. Yin et al., Nat. Commun. 9 (1), 3311 (2018).

    Article  Google Scholar 

  97. S. Huang and X. Ling, Small 13 (38), 1700823 (2017).

    Article  Google Scholar 

  98. P. C. Debnath, K. Park, and Y.-W. Song, Small Methods 2 (4), 1700315 (2018).

    Article  Google Scholar 

  99. J. Lu et al., Acc. Chem. Res. 49 (9), 1806 (2016).

    Article  Google Scholar 

  100. M. Engel, M. Steiner, and P. Avouris, Nano Lett. 14 (11), 6414 (2014).

    Article  Google Scholar 

  101. M. Buscema et al., Nano Lett. 14 (6), 3347 (2014).

    Article  Google Scholar 

  102. M. Huang et al., Adv. Mater. 28 (18), 3481 (2016).

    Article  Google Scholar 

  103. D.-H. Kang et al., ACS Photonics 4 (7), 1822 (2017).

    Article  Google Scholar 

  104. B. W. Su et al., ACS Appl. Mater. Interfaces 10 (41), 35615 (2018).

    Article  Google Scholar 

  105. M. Buscema et al., Nat. Commun. 5, 1 (2014).

    Article  Google Scholar 

  106. J. Miao et al., Small 14 (2), 1702082 (2018).

    Article  Google Scholar 

  107. J. Miao et al., ACS Nano 11 (6), 6048 (2017).

    Article  Google Scholar 

  108. Q. Guo et al., Nano Lett. 16, 4648 (2016).

    Article  Google Scholar 

  109. S. Deckoff-Jones et al., J. Opt. 20, 044004 (2018).

    Article  Google Scholar 

  110. Huang L. et al., ACS Nano 13, 913 (2019).

    Article  Google Scholar 

  111. X. Chen et al., Nat. Commun. 8 (1), 1672 (2017).

    Article  Google Scholar 

  112. J. D. Wood et al., Nano Lett. 14 (12), 6964 (2014).

    Article  Google Scholar 

  113. T. Low et al., Phys. Rev. B. 90, 081408 (2014).

    Article  Google Scholar 

  114. H. Zeng et al., Nanotecnology 29, 075201 (2018).

    Article  Google Scholar 

  115. S. Kansara, Y. Sonvane, and S. K. Gupta, Appl. Nanosci. 10 (1), 107 (2020).

    Article  Google Scholar 

  116. B. Liu et al., Adv. Mater. 27 (30), 4423 (2015).

    Article  Google Scholar 

  117. C. Gibaja et al., Angew. Chem. Int. Ed. 55 (46), 14345 (2016).

    Article  Google Scholar 

  118. X. Wang et al., Chem. Eng. J. 406, 126876 (2021).

    Article  Google Scholar 

  119. G. Abellán et al., Angew. Chem. Int. Ed. 56 (46), 14389 (2017).

    Article  Google Scholar 

  120. F. Chu et al., J. Mater. Chem. C. 6 (10), 2509 (2018).

    Article  Google Scholar 

  121. Q. Xiao et al., Nanoscale Horizons 5, 124 (2020).

    Article  Google Scholar 

  122. T. Niu et al., Adv. Mater. 32, 1906873 (2020).

    Article  Google Scholar 

  123. C. Xing et al., ACS Photonics 5 (2), 621 (2018).

    Article  Google Scholar 

  124. T. Tong et al., Adv. Funct. Mater, 29 (50), 1905806 (2019).

    Article  Google Scholar 

  125. L. Shen et al., Chem. Mater. 32 (24), 10476 (2020).

    Article  Google Scholar 

  126. Z. Bai et al., ACS Appl. Nano Mater. 3 (11), 10749 (2020).

    Article  Google Scholar 

  127. F. Yan et al., Mater. Res. Bull. 150, 111765 (2022).

    Article  Google Scholar 

  128. J. Min et al., Phys. Rev. B 100 (8), 85402 (2019).

    Article  Google Scholar 

  129. M. Amani et al., ACS Nano 12 (7), 7253 (2018).

    Article  Google Scholar 

  130. C. Shen et al., ACS Nano 14 (1), 303 (2020).

    Article  Google Scholar 

  131. A. Rogalski, Infrared and Terahertz Detectors, 3rd ed. (CRC Press, 2019).

    Book  Google Scholar 

  132. M. Petrov, J. Bekaert, and M. V. Milosevic, 2D Mater. 8, 035056 (2021).

  133. A. Kutana et al., Nanoscale Adv, 4 (5), 1408 (2022).

    Article  Google Scholar 

  134. D. Singh et al., RSC Adv. 6 (10), 8006 (2016).

    Article  Google Scholar 

  135. D. Singh et al., Sci. Rep. 9 (1), 17300 (2019).

    Article  Google Scholar 

  136. M.-L. Tao et al., 2D Mater. 5, 035009 (2018).

  137. D. Pandey et al., Appl. Surf. Sci. 531, 147364 (2020).

    Article  Google Scholar 

  138. D. Pandey et al., Comput. Mater. Sci. 185, 109952 (2020).

    Article  Google Scholar 

  139. I. Lukacevic et al., J. Mater. Chem. C 7, 2666 (2019).

    Article  Google Scholar 

  140. X. Wang et al., Angew. Chemie Int. Ed. 59 (52), 23559 (2020).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-29-20080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Popov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, V.S., Ponomarenko, V.P. & Popov, S.V. 2D Material-Based Photo- and Nanoelectronics. Part III. Photosensors Based on Graphene, Graphene-Like, and Related 2D Nanomaterials. J. Commun. Technol. Electron. 67, 1152–1174 (2022). https://doi.org/10.1134/S1064226922090133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922090133

Keywords:

Navigation