Skip to main content

Advertisement

Log in

Ocular barriers as a double-edged sword: preventing and facilitating drug delivery to the retina

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

In recent decades, the growing of the aging population in the world brings increasingly heavy burden of vision-threatening retinal diseases. One of the biggest challenges in the treatment of retinal diseases is the effective drug delivery to the diseased area. Due to the existence of multiple anatomical and physiological barriers of the eye, commonly used oral drugs or topical eye drops cannot effectively reach the retinal lesions. Innovations in new drug formulations and delivery routes have been continuously applied to improve current drug delivery to the back of the eye. Unique ocular anatomical structures or physiological activities on these ocular barriers, in turn, can facilitate drug delivery to the retina if compatible formulations or delivery routes are properly designed or selected. This paper focuses on key barrier structures of the eye and summarizes advances of corresponding drug delivery means to the retina, including various local drug delivery routes by invasive approaches, as well as systemic eye drug delivery by non-invasive approaches.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

AAV:

Adeno-associated virus

ABC:

ATP-binding cassette

AIDS:

Acquired immune deficiency syndrome

AMD:

Age-related macular degeneration

AUC:

Area under the curve

BRB:

Blood-retinal barrier

BBB:

Blood-brain barrier

iBRB:

Inner blood-retinal barrier

oBRB:

Outer blood-retinal barrier

CNS:

Central nervous system

CNV:

Choroidal neovascularization

DR:

Diabetic retinopathy

FDA:

Food and Drug Administration

GFP:

Green fluorescein protein

HLA:

Human leukocyte antigen

iPSC:

Induced pluripotent stem cells

LAT1:

L-type amino acid transporter 1

mTOR:

Mammalian target of rapamycin

PDGF:

Platelet-derived growth factor

PDS:

Port delivery system

PLGA:

Poly (lactic-co-glycolic) acid

RPE:

Retinal pigment epithelium

SLC:

Solute carrier

siRNA:

Small interfering RNA

shRNA:

Short hairpin RNA

VEGF:

Vascular endothelial growth factor

References

  1. Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64. https://doi.org/10.2337/dc11-1909.

    Article  Google Scholar 

  2. Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106-116. https://doi.org/10.1016/s2214-109x(13)70145-1.

    Article  Google Scholar 

  3. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health. 2021;9(2): e144-e160. https://doi.org/10.1016/s2214-109x(20)30489-7.

  4. Maharjan P, Cho KH, Maharjan A, et al. Pharmaceutical challenges and perspectives in developing ophthalmic drug formulations. J Pharm Investig. 2019;49(2):215–28. https://doi.org/10.1007/s40005-018-0404-6.

    Article  CAS  Google Scholar 

  5. Wang L, Zhou MB, Zhang H. The emerging role of topical ocular drugs to target the posterior eye. Ophthalmol Therapy. 2021;10(3):465–94. https://doi.org/10.1007/s40123-021-00365-y.

    Article  Google Scholar 

  6. Li Q, Weng J, Wong SN, et al. Nanoparticulate drug delivery to the retina. Mol Pharm. 2021;18(2):506–21. https://doi.org/10.1021/acs.molpharmaceut.0c00224.

    Article  CAS  Google Scholar 

  7. Kim HM, Woo SJ. Ocular drug delivery to the retina: current innovations and future perspectives. Pharmaceutics, 2021;13(1). https://doi.org/10.3390/pharmaceutics13010108.

  8. Kang-Mieler JJ, Rudeen KM, Liu W, et al. Advances in ocular drug delivery systems. Eye (Lond). 2020;34(8):1371–9. https://doi.org/10.1038/s41433-020-0809-0.

    Article  CAS  Google Scholar 

  9. Gote V, Sikder S, Sicotte J, et al. Ocular drug delivery: present innovations and future challenges. J Pharmacol Exp Ther. 2019;370(3):602–24. https://doi.org/10.1124/jpet.119.256933.

    Article  CAS  Google Scholar 

  10. Ben-Arzi A, Ehrlich R, Neumann R. Retinal diseases: the next frontier in pharmacodelivery. Pharmaceutics. 2022;14(5). https://doi.org/10.3390/pharmaceutics14050904.

  11. Alamouti B, Funk J. Retinal thickness decreases with age: an OCT study. Br J Ophthalmol. 2003;87(7):899–901. https://doi.org/10.1136/bjo.87.7.899.

    Article  CAS  Google Scholar 

  12. Cunha-Vaz J, Bernardes R, Lobo C. Blood-retinal barrier. Eur J Ophthalmol. 2011;21(Suppl 6):S3-9. https://doi.org/10.5301/ejo.2010.6049.

    Article  Google Scholar 

  13. Runkle EA, Antonetti DA. The blood-retinal barrier: structure and functional significance. Methods in molecular biology (Clifton, N.J.). 2011;686: 133–148.

  14. Liu L, Liu X. Roles of drug transporters in blood-retinal barrier. Adv Exp Med Biol. 2019;1141:467–504. https://doi.org/10.1007/978-981-13-7647-4_10.

    Article  CAS  Google Scholar 

  15. Tomi M, Hosoya K. The role of blood-ocular barrier transporters in retinal drug disposition: an overview. Expert Opin Drug Metab Toxicol. 2010;6(9):1111–24. https://doi.org/10.1517/17425255.2010.486401.

    Article  CAS  Google Scholar 

  16. Sweet DH, Miller DS, Pritchard JB, et al. Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. J Biol Chem. 2002;277(30):26934–43. https://doi.org/10.1074/jbc.M203803200.

    Article  CAS  Google Scholar 

  17. Smeets PH, van Aubel RA, Wouterse AC, et al. Contribution of multidrug resistance protein 2 (MRP2/ABCC2) to the renal excretion of p-aminohippurate (PAH) and identification of MRP4 (ABCC4) as a novel PAH transporter. J Am Soc Nephrol. 2004;15(11):2828–35. https://doi.org/10.1097/01.asn.0000143473.64430.ac.

    Article  CAS  Google Scholar 

  18. Murakami T. A minireview: usefulness of transporter-targeted prodrugs in enhancing membrane permeability. J Pharm Sci. 2016;105(9):2515–26. https://doi.org/10.1016/j.xphs.2016.05.012.

    Article  CAS  Google Scholar 

  19. Dahlin A, Geier E, Stocker SL, et al. Gene expression profiling of transporters in the solute carrier and ATP-binding cassette superfamilies in human eye substructures. Mol Pharm. 2013;10(2):650–63. https://doi.org/10.1021/mp300429e.

    Article  CAS  Google Scholar 

  20. Kansara V, Hao Y, Mitra AK. Dipeptide monoester ganciclovir prodrugs for transscleral drug delivery: targeting the oligopeptide transporter on rabbit retina. J Ocul Pharmacol Ther. 2007;23(4):321–34. https://doi.org/10.1089/jop.2006.0150.

    Article  CAS  Google Scholar 

  21. Anand B, Nashed Y, Mitra A. Novel dipeptide prodrugs of acyclovir for ocular herpes infections: bioreversion, antiviral activity and transport across rabbit cornea. Curr Eye Res. 2003;26(3–4):151–63. https://doi.org/10.1076/ceyr.26.3.151.14893.

    Article  Google Scholar 

  22. Hellinen L, Sato K, Reinisalo M, et al. Quantitative protein expression in the human retinal pigment epithelium: comparison between apical and basolateral plasma membranes with emphasis on transporters. Invest Ophthalmol Vis Sci. 2019;60(15):5022–34. https://doi.org/10.1167/iovs.19-27328.

    Article  CAS  Google Scholar 

  23. Atluri H, Anand BS, Patel J, et al. Mechanism of a model dipeptide transport across blood-ocular barriers following systemic administration. Exp Eye Res. 2004;78(4):815–22. https://doi.org/10.1016/j.exer.2003.10.020.

    Article  CAS  Google Scholar 

  24. Toda R, Kawazu K, Oyabu M, et al. Comparison of drug permeabilities across the blood-retinal barrier, blood-aqueous humor barrier, and blood-brain barrier. J Pharm Sci. 2011;100(9):3904–11. https://doi.org/10.1002/jps.22610.

    Article  CAS  Google Scholar 

  25. Puris E, Gynther M, Auriola S, et al. L-Type amino acid transporter 1 as a target for drug delivery. Pharmaceutic Res. 2020;37(5). https://doi.org/10.1007/s11095-020-02826-8.

  26. Schwartzman ML, Masferrer J, Dunn MW, et al. Cytochrome P450, drug metabolizing enzymes and arachidonic acid metabolism in bovine ocular tissues. Curr Eye Res. 1987;6(4):623–30. https://doi.org/10.3109/02713688709025223.

    Article  CAS  Google Scholar 

  27. Usui T, Kubo Y, Akanuma S, et al. Β-alanine and l-histidine transport across the inner blood-retinal barrier: potential involvement in L-carnosine supply. Exp Eye Res. 2013;113:135–42. https://doi.org/10.1016/j.exer.2013.06.002.

    Article  CAS  Google Scholar 

  28. Kubo Y, Akanuma SI, Hosoya KI. Recent advances in drug and nutrient transport across the blood-retinal barrier. Expert Opin Drug Metab Toxicol. 2018;14(5):513–31. https://doi.org/10.1080/17425255.2018.1472764.

    Article  CAS  Google Scholar 

  29. Rautio J, Meanwell NA, Di L, et al. The expanding role of prodrugs in contemporary drug design and development. Nat Rev Drug Discov. 2018;17(8):559–87. https://doi.org/10.1038/nrd.2018.46.

    Article  CAS  Google Scholar 

  30. Khattak S, Gupta N, Hupple C, et al. Melanin distribution in intact human and minipig eyes detected by photoacoustic imaging. Invest Ophthalmol Vis Sci. 2015;56(7):896.

    Google Scholar 

  31. Rimpelä AK, Schmitt M, Latonen S, et al. Drug distribution to retinal pigment epithelium: studies on melanin binding, cellular kinetics, and single photon emission computed tomography/computed tomography imaging. Mol Pharm. 2016;13(9):2977–86. https://doi.org/10.1021/acs.molpharmaceut.5b00787.

    Article  CAS  Google Scholar 

  32. Ings RM. The melanin binding of drugs and its implications. Drug Metab Rev. 1984;15(5–6):1183–212. https://doi.org/10.3109/03602538409033561.

    Article  CAS  Google Scholar 

  33. Rimpelä AK, Hagström M, Kidron H, et al. Melanin targeting for intracellular drug delivery: quantification of bound and free drug in retinal pigment epithelial cells. J Control Release. 2018;283:261–8. https://doi.org/10.1016/j.jconrel.2018.05.034.

    Article  CAS  Google Scholar 

  34. Rimpelä AK, Reinisalo M, Hellinen L, et al. Implications of melanin binding in ocular drug delivery. Adv Drug Deliv Rev. 2018;126:23–43. https://doi.org/10.1016/j.addr.2017.12.008.

    Article  CAS  Google Scholar 

  35. Reilly J, Williams SL, Forster CJ, et al. High-throughput melanin-binding affinity and in silico methods to aid in the prediction of drug exposure in ocular tissue. J Pharm Sci. 2015;104(12):3997–4001. https://doi.org/10.1002/jps.24680.

    Article  CAS  Google Scholar 

  36. Jakubiak P, Reutlinger M, Mattei P, et al. Understanding molecular drivers of melanin binding to support rational design of small molecule ophthalmic drugs. J Med Chem. 2018;61(22):10106–15. https://doi.org/10.1021/acs.jmedchem.8b01281.

    Article  CAS  Google Scholar 

  37. Cheruvu NP, Amrite AC, Kompella UB. Effect of eye pigmentation on transscleral drug delivery. Invest Ophthalmol Vis Sci. 2008;49(1):333–41. https://doi.org/10.1167/iovs.07-0214.

    Article  Google Scholar 

  38. KO Y-P, Boyer D, Marlor C, et al. Ocular tissue distribution of the complement factor d inhibitor danicopan following oral administration in rabbits. Invest Ophthalmol & Vis Sci. 2020;61(7):4916–4916.

  39. Robbie SJ, Lundh von Leithner P, Ju M, et al. Assessing a novel depot delivery strategy for noninvasive administration of VEGF/PDGF RTK inhibitors for ocular neovascular disease. Invest Ophthalmol Vis Sci. 2013;54(2):1490–1500. https://doi.org/10.1167/iovs.12-10169.

  40. Boyer D, Rivera J, Ko YP, et al. Oral administration of the complement factor d inhibitor danicopan (ALXN2040) in preclinical studies demonstrates high and sustained drug concentrations in posterior ocular tissues for the potential treatment of geographic atrophy. Investig Ophthalmol Vis Sci. 2021;62(8).

  41. Hu DN, Simon JD, Sarna T. Role of ocular melanin in ophthalmic physiology and pathology. Photochem Photobiol. 2008;84(3):639–44. https://doi.org/10.1111/j.1751-1097.2008.00316.x.

    Article  CAS  Google Scholar 

  42. Hancock HA, Guidry C, Read RW, et al. Acute aminoglycoside retinal toxicity in vivo and in vitro. Invest Ophthalmol Vis Sci. 2005;46(12):4804–8. https://doi.org/10.1167/iovs.05-0604.

    Article  Google Scholar 

  43. Legros J, Rosner I, Berger C. Retinal toxicity of chlorpromazine in the rat. Toxicol Appl Pharmacol. 1973;26(3):459–65. https://doi.org/10.1016/0041-008x(73)90282-2.

    Article  CAS  Google Scholar 

  44. Jaanus SD. Ocular side effects of selected systemic drugs. Optom Clin. 1992;2(4):73–96.

    CAS  Google Scholar 

  45. Chen L, Li H, Zhao R, et al. Study progress of cell endocytosis. Chin Ger J Clin Oncol. 2009;8(6):360–5. https://doi.org/10.1007/s10330-009-0023-9.

    Article  CAS  Google Scholar 

  46. Kambhampati SP, Clunies-Ross AJ, Bhutto I, et al. Systemic and intravitreal delivery of dendrimers to activated microglia/macrophage in ischemia/reperfusion mouse retina. Invest Ophthalmol Vis Sci. 2015;56(8):4413–24. https://doi.org/10.1167/iovs.14-16250.

    Article  CAS  Google Scholar 

  47. Gu X, Reagan AM, McClellan ME, et al. Caveolins and caveolae in ocular physiology and pathophysiology. Prog Retin Eye Res. 2017;56:84–106. https://doi.org/10.1016/j.preteyeres.2016.09.005.

    Article  CAS  Google Scholar 

  48. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85(3):845–81. https://doi.org/10.1152/physrev.00021.2004.

    Article  CAS  Google Scholar 

  49. Mazzoni F, Safa H, Finnemann SC. Understanding photoreceptor outer segment phagocytosis: use and utility of RPE cells in culture. Exp Eye Res. 2014;126:51–60. https://doi.org/10.1016/j.exer.2014.01.010.

    Article  CAS  Google Scholar 

  50. Kimura H, Ogura Y, Moritera T, et al. In vitro phagocytosis of polylactide microspheres by retinal pigment epithelial cells and intracellular drug release. Curr Eye Res. 1994;13(5):353–60.

    Article  CAS  Google Scholar 

  51. Li RM, Sorensen KK, Smedsrod B, et al. [Receptor mediated endocytosis of retinal pigment epithelial cell][J]. Zhonghua Yan Ke Za Zhi. 2004;40(8):539–44.

    Google Scholar 

  52. Gan L, Wang J, Zhao Y, et al. Hyaluronan-modified core-shell liponanoparticles targeting CD44-positive retinal pigment epithelium cells via intravitreal injection. Biomaterials. 2013;34(24):5978–87. https://doi.org/10.1016/j.biomaterials.2013.04.035.

    Article  CAS  Google Scholar 

  53. Xia W, Li C, Chen Q, et al. Intravenous route to choroidal neovascularization by macrophage-disguised nanocarriers for mTOR modulation. Acta Pharmaceutica Sinica B. 2022;12(5):2506–21. https://doi.org/10.1016/j.apsb.2021.10.022.

    Article  CAS  Google Scholar 

  54. Mei L, Yu M, Liu Y, et al. Synthetic high-density lipoprotein nanoparticles delivering rapamycin for the treatment of age-related macular degeneration. Nanomed Nanotechnol Biol Med. 2022;44. https://doi.org/10.1016/j.nano.2022.102571.

  55. Qu W, Meng B, Yu Y, et al. Folic acid-conjugated mesoporous silica nanoparticles for enhanced therapeutic efficacy of topotecan in retina cancers. Int J Nanomed. 2018;13:4379–89. https://doi.org/10.2147/IJN.S142668.

    Article  CAS  Google Scholar 

  56. Zhang J, Jiao J, Niu M, et al. Ten years of knowledge of nano-carrier based drug delivery systems in ophthalmology: current evidence, challenges, and future prospective. Int J Nanomed. 2021;16:6497–530. https://doi.org/10.2147/IJN.S329831.

    Article  Google Scholar 

  57. Ohira A, Hara K, Jóhannesson G, et al. Topical dexamethasone γ-cyclodextrin nanoparticle eye drops increase visual acuity and decrease macular thickness in diabetic macular edema. Invest Ophthalmol Vis Sci. 2015;56(7):2289.

    Google Scholar 

  58. Langston Suen WL, Chau Y. Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells. J Pharm Pharmacol. 2014;66(4):564–73. https://doi.org/10.1111/jphp.12134.

    Article  CAS  Google Scholar 

  59. Moritera T, Ogura Y, Yoshimura N, et al. Feasibility of drug targeting to the retinal pigment epithelium with biodegradable microspheres. Curr Eye Res. 1994;13(3):171–6. https://doi.org/10.3109/02713689408995774.

    Article  CAS  Google Scholar 

  60. Park J, Zhang Y, Vykhodtseva N, et al. Targeted and reversible blood-retinal barrier disruption via focused ultrasound and microbubbles. PLoS ONE. 2012;7(8): e42754. https://doi.org/10.1371/journal.pone.0042754.

    Article  CAS  Google Scholar 

  61. Sheikov N, McDannold N, Sharma S, et al. Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol. 2008;34(7):1093–104. https://doi.org/10.1016/j.ultrasmedbio.2007.12.015.

    Article  Google Scholar 

  62. Touahri Y, Dixit R, Kofoed RH, et al. Focused ultrasound as a novel strategy for noninvasive gene delivery to retinal Müller glia. Theranostics. 2020;10(7):2982–99. https://doi.org/10.7150/thno.42611.

    Article  CAS  Google Scholar 

  63. Tabatabaei SN, Tabatabaei MS, Girouard H, et al. Hyperthermia of magnetic nanoparticles allows passage of sodium fluorescein and Evans blue dye across the blood-retinal barrier. Int J Hyperthermia. 2016;32(6):657–65. https://doi.org/10.1080/02656736.2016.1193903.

    Article  CAS  Google Scholar 

  64. Campbell M, Nguyen AT, Kiang AS, et al. Reversible and size-selective opening of the inner blood-retina barrier: a novel therapeutic strategy. Adv Exp Med Biol. 2010;664:301–8. https://doi.org/10.1007/978-1-4419-1399-9_34.

    Article  CAS  Google Scholar 

  65. Campbell M, Nguyen AT, Kiang AS, et al. An experimental platform for systemic drug delivery to the retina. Proc Natl Acad Sci U S A. 2009;106(42):17817–22. https://doi.org/10.1073/pnas.0908561106.

    Article  Google Scholar 

  66. Campbell M, Humphries MM, Kiang AS, et al. Systemic low-molecular weight drug delivery to pre-selected neuronal regions. EMBO Mol Med. 2011;3(4):235–45. https://doi.org/10.1002/emmm.201100126.

    Article  CAS  Google Scholar 

  67. Lu X, Le Noble F, Yuan L, et al. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature. 2004;432(7014):179–86. https://doi.org/10.1038/nature03080.

    Article  CAS  Google Scholar 

  68. Boyé K, Geraldo LH, Furtado J, et al. Endothelial Unc5B controls blood-brain barrier integrity. Nat Commun. 2022;13(1):1169. https://doi.org/10.1038/s41467-022-28785-9.

    Article  CAS  Google Scholar 

  69. Chiang B, Jung JH, Prausnitz MR. The suprachoroidal space as a route of administration to the posterior segment of the eye. Adv Drug Deliv Rev. 2018;126:58–66. https://doi.org/10.1016/j.addr.2018.03.001.

    Article  CAS  Google Scholar 

  70. Chiang B, Venugopal N, Grossniklaus HE, et al. Thickness and closure kinetics of the suprachoroidal space following microneedle injection of liquid formulations. Invest Ophthalmol Vis Sci. 2017;58(1):555–64. https://doi.org/10.1167/iovs.16-20377.

    Article  CAS  Google Scholar 

  71. Felder AE, Leiderman YI, Tomback M, et al. Design of a navigational catheter system for the targeted delivery of therapeutics within the suprachoroidal space. J Med Eng Technol. 2020;44(8):508–16. https://doi.org/10.1080/03091902.2020.1831632.

    Article  Google Scholar 

  72. Rizzo S, Ebert FG, Bartolo ED, et al. Suprachoroidal drug infusion for the treatment of severe subfoveal hard exudates. Retina. 2012;32(4):776–84. https://doi.org/10.1097/IAE.0b013e3182278b0e.

    Article  Google Scholar 

  73. Tetz M, Rizzo S, Augustin AJ. Safety of submacular suprachoroidal drug administration via a microcatheter: retrospective analysis of European treatment results. Ophthalmologica. 2012;227(4):183–9. https://doi.org/10.1159/000336045.

    Article  CAS  Google Scholar 

  74. Patel SR, Berezovsky DE, McCarey BE, et al. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. Invest Ophthalmol Vis Sci. 2012;53(8):4433–41. https://doi.org/10.1167/iovs.12-9872.

    Article  CAS  Google Scholar 

  75. Hejri A, Bowland II, Nickerson JM, et al. Reliable suprachoroidal delivery in rodents using a high-precision microneedle injector. Investig Ophthalmol Vis Sci. 2021;62(8).

  76. Yeh S, Khurana RN, Shah M, et al. Efficacy and safety of suprachoroidal CLS-TA for macular edema secondary to noninfectious uveitis: phase 3 randomized trial. Ophthalmology. 2020;127(7):948–55. https://doi.org/10.1016/j.ophtha.2020.01.006.

    Article  Google Scholar 

  77. Jung JH, Chiang B, Grossniklaus HE, et al. Ocular drug delivery targeted by iontophoresis in the suprachoroidal space using a microneedle. J Control Release. 2018;277:14–22. https://doi.org/10.1016/j.jconrel.2018.03.001.

    Article  CAS  Google Scholar 

  78. Yiu G, Chung SH, Mollhoff IN, et al. Suprachoroidal and subretinal injections of AAV using transscleral microneedles for retinal gene delivery in nonhuman primates. Mol Ther Methods Clin Dev. 2020;16:179–91. https://doi.org/10.1016/j.omtm.2020.01.002.

    Article  CAS  Google Scholar 

  79. Ding K, Shen JK, Hafiz Z, et al. AAV8-vectored suprachoroidal gene transfer produces widespread ocular transgene expression. J Clin Investig. 2019;129(11):4901–11. https://doi.org/10.1172/jci129085.

    Article  CAS  Google Scholar 

  80. Muya L, El-Kattan Y, Kansara V, et al. Long-acting potential of suprachoroidally delivered BCX4161, a selective plasma kallikrein inhibitor, for diabetic macular edema. Investigative Ophthalmol Vis Sci. 2021;62(8).

  81. Muya L, Kansara V, Ciulla T. Pharmacokinetics and ocular tolerability of suprachoroidal CLS-AX (axitinib injectable suspension) in rabbits. Investig Ophthalmol Vis Sci. 2020;61(7).

  82. Tyagi P, Kadam RS, Kompella UB. Comparison of suprachoroidal drug delivery with subconjunctival and intravitreal routes using noninvasive fluorophotometry. PLoS ONE. 2012;7(10): e48188. https://doi.org/10.1371/journal.pone.0048188.

    Article  CAS  Google Scholar 

  83. Kansara VS, Muya LW, Ciulla TA. Evaluation of long-lasting potential of suprachoroidal axitinib suspension via ocular and systemic disposition in rabbits. Translational Vision Science & Technology. 2021;10(7):19–19. https://doi.org/10.1167/tvst.10.7.19.

    Article  Google Scholar 

  84. Muya L, Kansara V, Cavet ME, et al. Suprachoroidal injection of triamcinolone acetonide suspension: ocular pharmacokinetics and distribution in rabbits demonstrates high and durable levels in the chorioretina. Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics. 2022. https://doi.org/10.1089/jop.2021.0090.

    Article  Google Scholar 

  85. Jung JH, Desit P, Prausnitz MR. Targeted drug delivery in the suprachoroidal space by swollen hydrogel pushing. Invest Ophthalmol Vis Sci. 2018;59(5):2069–79. https://doi.org/10.1167/iovs.17-23758.

    Article  CAS  Google Scholar 

  86. Jung JH, Park S, Chae JJ, et al. Collagenase injection into the suprachoroidal space of the eye to expand drug delivery coverage and increase posterior drug targeting. Exp Eye Res.earch, 2019;189. https://doi.org/10.1016/j.exer.2019.107824.

  87. Kim YC, Edelhauser HF, Prausnitz MR. Particle-stabilized emulsion droplets for gravity-mediated targeting in the posterior segment of the eye. Adv Healthcare Mater. 2014;3(8):1272–82. https://doi.org/10.1002/adhm.201300696.

    Article  CAS  Google Scholar 

  88. Abarca EM, Salmon JH, Gilger BC. Effect of choroidal perfusion on ocular tissue distribution after intravitreal or suprachoroidal injection in an arterially perfused ex vivo pig eye model. J Ocul Pharmacol Ther. 2013;29(8):715–22. https://doi.org/10.1089/jop.2013.0063.

    Article  CAS  Google Scholar 

  89. Chiang B, Wang K, Ethier CR, et al. Clearance kinetics and clearance routes of molecules from the suprachoroidal space after microneedle injection. Invest Ophthalmol Vis Sci. 2017;58(1):545–54. https://doi.org/10.1167/iovs.16-20679.

    Article  CAS  Google Scholar 

  90. Gu B, Liu J, Li X, et al. Real-time monitoring of suprachoroidal space (SCS) following SCS injection using ultra-high resolution optical coherence tomography in guinea pig eyes. Invest Ophthalmol Vis Sci. 2015;56(6):3623–34. https://doi.org/10.1167/iovs.15-16597.

    Article  CAS  Google Scholar 

  91. Olsen TW, Feng X, Wabner K, et al. Pharmacokinetics of pars plana intravitreal injections versus microcannula suprachoroidal injections of bevacizumab in a porcine model. Invest Ophthalmol Vis Sci. 2011;52(7):4749–56. https://doi.org/10.1167/iovs.10-6291.

    Article  CAS  Google Scholar 

  92. Wang MZ, Liu W, Lu QJ, et al. Pharmacokinetic comparison of ketorolac after intracameral, intravitreal, and suprachoroidal administration in rabbits. Retina-the Journal of Retinal and Vitreous Diseases. 2012;32(10):2158–64. https://doi.org/10.1097/IAE.0b013e3182576d1d.

    Article  CAS  Google Scholar 

  93. Ribeiro R, Humayun MS, Purvis R, et al. Evaluation of the performance, biocompatibility and safety of a new posterior micropump drug delivery system. Invest Ophthalmol Vis Sci. 2015;56(7):157.

    Google Scholar 

  94. Peng Y, Tang L, Zhou Y. Subretinal injection: a review on the novel route of therapeutic delivery for vitreoretinal diseases. Ophthalmic Res. 2017;58(4):217–26. https://doi.org/10.1159/000479157.

    Article  CAS  Google Scholar 

  95. Novelli FJD, Preti RC, Monteiro MLR, et al. A new method of subretinal injection of tissue plasminogen activator and air in patients with submacular hemorrhage. Retina. 2017;37(8):1607–11. https://doi.org/10.1097/iae.0000000000001491.

    Article  Google Scholar 

  96. El-Baha SM, Abdel Hadi AM, Abouhussein MA. Submacular injection of ranibizumab as a new surgical treatment for refractory diabetic macular edema. J Ophthalmol. 2019;2019:6274209. https://doi.org/10.1155/2019/6274209.

    Article  CAS  Google Scholar 

  97. Britten-Jones AC, Jin R, Gocuk SA, et al. The safety and efficacy of gene therapy treatment for monogenic retinal and optic nerve diseases: a systematic review. Genet Med. 2022;24(3):521–34. https://doi.org/10.1016/j.gim.2021.10.013.

    Article  Google Scholar 

  98. Danos O, Campochiaro P, Heier J, et al. RGX-314 ocular gene therapy: overview of phase I/IIa ongoing trial for neovascular age-related macular degeneration (nAMD) and future directions. Mol Ther. 2020;28(4):557–8. https://doi.org/10.1016/j.ymthe.2020.04.019.

    Article  Google Scholar 

  99. Chandler S, Campochiaro P, Lauer A, et al. Results from the phase i GEM study, evaluating safety and tolerability of subretinally-injected lentiviral vector (retinostat®) for the treatment of wet age-related macular degeneration (AMD). Invest Ophthalmol Vis Sci. 2015;56(7):2284.

    Google Scholar 

  100. Darrow JJ. Luxturna: FDA documents reveal the value of a costly gene therapy. Drug Discovery Today. 2019;24(4):949–54. https://doi.org/10.1016/j.drudis.2019.01.019.

    Article  Google Scholar 

  101. Inoue M, Maeno T, Hatchell DL. Survival of allografted pancreatic islets in the subretinal space in rats. Ophthalmic Res. 2003;35(1):48–53. https://doi.org/10.1159/000068197.

    Article  CAS  Google Scholar 

  102. Ehinger B, Bergstrom A, Seiler M, et al. Ultrastructure of human retinal cell transplants with long survival times in rats. Exp Eye Res. 1991;53(4):447–60. https://doi.org/10.1016/0014-4835(91)90162-8.

    Article  CAS  Google Scholar 

  103. Kashani AH, Martynova A, Koss M, et al. Subretinal implantation of a human embryonic stem cell-derived retinal pigment epithelium monolayer in a porcine model. Adv Exp Med Biol. 2019;1185:569–74. https://doi.org/10.1007/978-3-030-27378-1_93.

    Article  CAS  Google Scholar 

  104. Singh MS, Park SS, Albini TA, et al. Retinal stem cell transplantation: balancing safety and potential. Prog Retinal Eye Res. 2020;75. https://doi.org/10.1016/j.preteyeres.2019.100779.

  105. Li SY, Liu Y, Wang L, et al. A phase I clinical trial of human embryonic stem cell-derived retinal pigment epithelial cells for early-stage Stargardt macular degeneration: 5-years' follow-up. Cell Proliferation. 2021;54(9). https://doi.org/10.1111/cpr.13100.

  106. Grisanti S, Ishioka M, Kosiewicz M, et al. Immunity and immune privilege elicited by cultured retinal pigment epithelial cell transplants. Invest Ophthalmol Vis Sci. 1997;38(8):1619–26.

    CAS  Google Scholar 

  107. Xian B, Huang B. The immune response of stem cells in subretinal transplantation. Stem Cell Res Ther. 2015;6:161. https://doi.org/10.1186/s13287-015-0167-1.

    Article  CAS  Google Scholar 

  108. Kashani AH, Lebkowski JS, Hinton DR, et al. Survival of an HLA-mismatched, bioengineered RPE implant in dry age-related macular degeneration. Stem Cell Reports. 2022;17(3):448–58. https://doi.org/10.1016/j.stemcr.2022.01.001.

    Article  CAS  Google Scholar 

  109. McGill TJ, Stoddard J, Renner LM, et al. Allogeneic iPSC-derived RPE cell graft failure following transplantation into the subretinal space in nonhuman primates. Invest Ophthalmol Vis Sci. 2018;59(3):1374–83. https://doi.org/10.1167/iovs.17-22467.

    Article  CAS  Google Scholar 

  110. Kennelly KP, Holmes TM, Wallace DM, et al. Early subretinal allograft rejection is characterized by innate immune activity. Cell Transplant. 2017;26(6):983–1000. https://doi.org/10.3727/096368917x694697.

    Article  Google Scholar 

  111. Singh RK, Occelli LM, Binette F, et al. Transplantation of human embryonic stem cell-derived retinal tissue in the subretinal space of the cat eye. Stem Cells Dev. 2019;28(17):1151–66. https://doi.org/10.1089/scd.2019.0090.

    Article  CAS  Google Scholar 

  112. Ramachandran PS, Lee V, Wei Z, et al. Evaluation of dose and safety of AAV7m8 and AAV8BP2 in the non-human primate retina. Hum Gene Ther. 2017;28(2):154–67. https://doi.org/10.1089/hum.2016.111.

    Article  CAS  Google Scholar 

  113. Ghoraba HH, Akhavanrezayat A, Karaca I, et al. Ocular gene therapy: a literature review with special focus on immune and inflammatory responses. Clin Ophthalmol. 2022;16:1753–71. https://doi.org/10.2147/OPTH.S364200.

    Article  Google Scholar 

  114. Varin J, Morival C, Maillard N, et al. Risk mitigation of immunogenicity: a key to personalized retinal gene therapy. International Journal of Molecular Sciences, 2021, 22(23). https://doi.org/10.3390/ijms222312818.

  115. Aleman TS, Huckfeldt RM, Serrano LW, et al. AAV2-hCHM subretinal delivery to the macula in choroideremia: two year interim results of an ongoing phase I/II gene therapy trial. Ophthalmology. 2022. https://doi.org/10.1016/j.ophtha.2022.06.006.

    Article  Google Scholar 

  116. Parker MA, Erker LR, Audo I, et al. Three-year safety results of SAR422459 (EIAV-ABCA4) gene therapy in patients with ABCA4-associated Stargardt disease: an open-label dose-escalation phase I/IIa clinical trial, cohorts 1–5: results of gene therapy in patients with Stargardt disease. Am J Ophthalmol. 2022;240:285–301. https://doi.org/10.1016/j.ajo.2022.02.013.

    Article  CAS  Google Scholar 

  117. Rakoczy EP, Magno AL, Lai CM, et al. Three-year follow-up of phase 1 and 2a rAAV.sFLT-1 subretinal gene therapy trials for exudative age-related macular degeneration. Am J Ophthalmol. 2019;204:113–123. https://doi.org/10.1016/j.ajo.2019.03.006.

  118. Cehajic-Kapetanovic J, Xue K, Edwards TL, et al. First-in-human robot-assisted subretinal drug delivery under local anesthesia. Am J Ophthalmol. 2022;237:104–13. https://doi.org/10.1016/j.ajo.2021.11.011.

    Article  CAS  Google Scholar 

  119. Friedrich S, Cheng YL, Saville B. Drug distribution in the vitreous humor of the human eye: the effects of intravitreal injection position and volume. Curr Eye Res. 1997;16(7):663–9. https://doi.org/10.1076/ceyr.16.7.663.5061.

    Article  CAS  Google Scholar 

  120. Le Goff MM, Bishop PN. Adult vitreous structure and postnatal changes. Eye (Lond). 2008;22(10):1214–22. https://doi.org/10.1038/eye.2008.21.

    Article  Google Scholar 

  121. Bos KJ, Holmes DF, Kadler KE, et al. Axial structure of the heterotypic collagen fibrils of vitreous humour and cartilage. J Mol Biol. 2001;306(5):1011–22. https://doi.org/10.1006/jmbi.2000.4429.

    Article  CAS  Google Scholar 

  122. Xu J, Heys JJ, Barocas VH, et al. Permeability and diffusion in vitreous humor: implications for drug delivery. Pharm Res. 2000;17(6):664–9. https://doi.org/10.1023/a:1007517912927.

    Article  CAS  Google Scholar 

  123. Crowell SR, Wang K, Famili A, et al. Influence of charge, hydrophobicity, and size on vitreous pharmacokinetics of large molecules. Transl Vis Sci Technol. 2019;8(6):1. https://doi.org/10.1167/tvst.8.6.1.

    Article  Google Scholar 

  124. Bakri SJ, Snyder MR, Reid JM, et al. Pharmacokinetics of intravitreal ranibizumab (Lucentis). Ophthalmology. 2007;114(12):2179–82. https://doi.org/10.1016/j.ophtha.2007.09.012.

    Article  Google Scholar 

  125. García-Quintanilla L, Luaces-Rodríguez A, Gil-Martínez M, et al. Pharmacokinetics of intravitreal anti-VEGF drugs in age-related macular degeneration. Pharmaceutics. 2019;11(8). https://doi.org/10.3390/pharmaceutics11080365.

  126. Rimpelä AK, Reunanen S, Hagström M, et al. Binding of small molecule drugs to porcine vitreous humor. Mol Pharm. 2018;15(6):2174–9. https://doi.org/10.1021/acs.molpharmaceut.8b00038.

    Article  CAS  Google Scholar 

  127. Käsdorf BT, Arends F, Lieleg O. Diffusion regulation in the vitreous humor. Biophys J. 2015;109(10):2171–81. https://doi.org/10.1016/j.bpj.2015.10.002.

    Article  CAS  Google Scholar 

  128. Lieleg O, Baumgärtel RM, Bausch AR. Selective filtering of particles by the extracellular matrix: an electrostatic bandpass. Biophys J. 2009;97(6):1569–77. https://doi.org/10.1016/j.bpj.2009.07.009.

    Article  CAS  Google Scholar 

  129. Xu Q, Boylan NJ, Suk JS, et al. Nanoparticle diffusion in, and microrheology of, the bovine vitreous ex vivo. J Control Release. 2013;167(1):76–84. https://doi.org/10.1016/j.jconrel.2013.01.018.

    Article  CAS  Google Scholar 

  130. Hussain RM, Shaukat BA, Ciulla LM, et al. Vascular endothelial growth factor antagonists: promising players in the treatment of neovascular age-related macular degeneration. Drug Des Dev Ther. 2021;15:2653–65. https://doi.org/10.2147/DDDT.S295223.

    Article  Google Scholar 

  131. Patel SS, Naor J, Qudrat A, et al. Phase 1 first-in-human study of KSI-301: a novel anti-VEGF antibody biopolymer conjugate with extended durability. Invest Ophthalmol ViS Sci. 2019;60(9).

  132. Muccioli C, Belfort R Jr. Treatment of cytomegalovirus retinitis with an intraocular sustained-release ganciclovir implant. Braz J Med Biol Res. 2000;33(7):779–89. https://doi.org/10.1590/s0100-879x2000000700008.

    Article  CAS  Google Scholar 

  133. Dhillon B, Kamal A, Leen C. Intravitreal sustained-release ganciclovir implantation to control cytomegalovirus retinitis in AIDS. Int J STD AIDS. 1998;9(4):227–30. https://doi.org/10.1258/0956462981922098.

    Article  CAS  Google Scholar 

  134. Nicolò M, Musetti D, Marenco M, et al. Real-life management of diabetic macular edema with dexamethasone intravitreal implant: a retrospective analysis of long-term clinical outcomes. J Ophthalmol. 2020;2020:4860743. https://doi.org/10.1155/2020/4860743.

    Article  Google Scholar 

  135. Cidad-Betegón MDP, Armadá-Maresca F, Amorena-Santesteban G, et al. Can the dexamethasone intravitreal implant Ozurdex be safely administered in an out-of-operating room setting?. J Drug Assess. 2020;9(1):66–71. https://doi.org/10.1080/21556660.2020.1742723.

    Article  Google Scholar 

  136. Campochiaro PA, Brown DM, Pearson A, et al. Long-term benefit of sustained-delivery fluocinolone acetonide vitreous inserts for diabetic macular edema. Ophthalmology. 2011;118(4):626-635.e622. https://doi.org/10.1016/j.ophtha.2010.12.028.

    Article  Google Scholar 

  137. Wong JG, Chang A, Guymer RH, et al. Phase 1 study of an intravitreal axitinib hydrogel-based implant for the treatment of neovascular age-related macular degeneration (nAMD). Investig Ophthalmol Vis Sci. 2021;62(8).

  138. Bernards DA, Lance KD, Ciaccio NA, et al. Nanostructured thin film polymer devices for constant-rate protein delivery. Nano Lett. 2012;12(10):5355–61. https://doi.org/10.1021/nl302747y.

    Article  CAS  Google Scholar 

  139. Lance KD, Bernards DA, Ciaccio NA, et al. In vivo and in vitro sustained release of ranibizumab from a nanoporous thin-film device. Drug Deliv Transl Res. 2016;6(6):771–80. https://doi.org/10.1007/s13346-016-0298-7.

    Article  CAS  Google Scholar 

  140. Pakdel FD, Mirshahi A, Zahedi P, et al. A novel approach for development of intraocular biodegradable ranibizumab implant: a solution for stability of protein activity. Adv PharmaceutiC Bull. 2021;11(4):632–642. https://doi.org/10.34172/APB.2021.072.

  141. Owens G, Sandahl M, Hernandez M, et al. Extended release of anti-VEGF biologics from biodegradable hydrogel implants for the treatment of age related macular degeneration. Invest Ophthalmol Vis Sci. 2016;57(12):527.

    Google Scholar 

  142. Verhoeven RS, Williams S, Conley J, et al. Extended release bevacizumab intravitreal implant is well tolerated in the african green monkey. Invest Ophthalmol Vis Sci. 2015;56(7):230.

    Google Scholar 

  143. Owens G, Sandahl M, Tully J, et al. Extended release aflibercept with sustained vitreous concentration in non-human primates from biodegradable hydrogel implants. Investig Ophthalmol Vis Sci. 2017;58(8).

  144. Karumanchi DK, Benner J, Cohen S, et al. Extended release of bevacizumab through nanoliposomes for treating ocular angiogenesis. Investig Ophthalmol Vis Sci. 2017;58(8).

  145. Van Kampen E, Vandervelden C, Fakhari A, et al. Design of hollow hyaluronic acid cylinders for sustained intravitreal protein delivery. J Pharm Sci. 2018;107(9):2354–65. https://doi.org/10.1016/j.xphs.2018.04.024.

    Article  CAS  Google Scholar 

  146. Schlesinger EB, Bernards DA, Chen HH, et al. Device design methodology and formulation of a protein therapeutic for sustained release intraocular delivery. Bioengineering and Translational Medicine. 2019;4(1):152–63. https://doi.org/10.1002/btm2.10121.

    Article  CAS  Google Scholar 

  147. Holekamp NM, Campochiaro PA, Chang M, et al. Archway randomized phase 3 trial of the port delivery system with ranibizumab for neovascular age-related macular degeneration. Ophthalmology. 2021. https://doi.org/10.1016/j.ophtha.2021.09.016.

    Article  Google Scholar 

  148. Lajunen T, Nurmi R, Kontturi L, et al. Light activated liposomes: functionality and prospects in ocular drug delivery. J Control Release. 2016;244(Pt B):157–66. https://doi.org/10.1016/j.jconrel.2016.08.024.

    Article  CAS  Google Scholar 

  149. Mahlumba P, Choonara YE, Kumar P, et al. Stimuli-responsive polymeric systems for controlled protein and peptide delivery: future implications for ocular delivery. Molecul. 2016;21(8). https://doi.org/10.3390/molecules21081002.

  150. Seyfoddin A, Chan A, Chen WT, et al. Electro-responsive macroporous polypyrrole scaffolds for triggered dexamethasone delivery. Eur J Pharm Biopharm. 2015;94:419–26. https://doi.org/10.1016/j.ejpb.2015.06.018.

    Article  CAS  Google Scholar 

  151. Lo R, Li PY, Saati S, et al. A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed Microdevices. 2009;11(5):959–70. https://doi.org/10.1007/s10544-009-9313-9.

    Article  CAS  Google Scholar 

  152. Basuki JS, Qie F, Mulet X, et al. Photo-modulated therapeutic protein release from a hydrogel depot using visible light. Angew Chem Int Ed Engl. 2017;56(4):966–71. https://doi.org/10.1002/anie.201610618.

    Article  CAS  Google Scholar 

  153. du Toit LC, Carmichael T, Govender T, et al. In vitro, in vivo, and in silico evaluation of the bioresponsive behavior of an intelligent intraocular implant. Pharm Res. 2014;31(3):607–34. https://doi.org/10.1007/s11095-013-1184-3.

    Article  CAS  Google Scholar 

  154. Gutiérrez-Hernández JC, Caffey S, Abdallah W, et al. One-year feasibility study of replenish micropump for intravitreal drug delivery: a pilot Study. Transl Vis Sci Technol. 2014;3(4):8. https://doi.org/10.1167/tvst.3.3.8.

    Article  Google Scholar 

  155. Humayun M, Santos A, Altamirano JC, et al. Implantable micropump for drug delivery in patients with diabetic macular edema. Transl Vis Sci Technol. 2014;3(6):5. https://doi.org/10.1167/tvst.3.6.5.

    Article  Google Scholar 

  156. Kusuhara S, Kim KW, Miki A, et al. Angiographic findings before and after the onset of brolucizumab-associated retinal vascular occlusion and intraocular inflammation. American Journal of Ophthalmology Case Reports, 2022, 26. https://doi.org/10.1016/j.ajoc.2022.101521.

  157. Yeh S, Kurup SK, Wang RC, et al. Suprachoroidal injection of triamcinolone acetonide, CLS-TA, for macular edema due to noninfectious uveitis: a randomized, phase 2 study (DOGWOOD). Retina. 2019;39(10):1880–8. https://doi.org/10.1097/iae.0000000000002279.

    Article  CAS  Google Scholar 

  158. Campochiaro PA, Wykoff CC, Brown DM, et al. Suprachoroidal triamcinolone acetonide for retinal vein occlusion: results of the tanzanite study. Ophthalmol Retina. 2018;2(4):320–8. https://doi.org/10.1016/j.oret.2017.07.013.

    Article  Google Scholar 

  159. Tayyab H, Ahmed CN, Sadiq MAA. Efficacy and safety of suprachoroidal Triamcinolone acetonide in cases of resistant diabetic macular edema. Pak J Med Sci, 2020, 36(2): 42–47. https://doi.org/10.12669/pjms.36.2.1194.

  160. Oner A, Gonen ZB, Sevim DG, et al. Suprachoroidal adipose tissue-derived mesenchymal stem cell implantation in patients with dry-type age-related macular degeneration and Stargardt’s macular dystrophy: 6-month follow-up results of a phase 2 study. Cell Reprogram. 2018;20(6):329–36. https://doi.org/10.1089/cell.2018.0045.

    Article  CAS  Google Scholar 

  161. Kahraman NS, Oner A. Umbilical cord derived mesenchymal stem cell implantation in retinitis pigmentosa: a 6-month follow-up results of a phase 3 trial. Int J Ophthalmol, 2020, 13(9): 1423–1429. https://doi.org/10.18240/ijo.2020.09.14.

  162. Nawar AE. Modified microneedle for suprachoroidal injection of triamcinolone acetonide combined with intravitreal injection of ranibizumab in branch retinal vein occlusion patients. Clin Ophthalmol. 2022;16:1139–51. https://doi.org/10.2147/OPTH.S361636.

    Article  Google Scholar 

  163. Zakaria YG, Salman AG, Said AMA, et al. Suprachoroidal versus intravitreal triamcinolone acetonide for the treatment of diabetic macular edema. Clin Ophthalmol. 2022;16:733–46. https://doi.org/10.2147/OPTH.S351853.

    Article  CAS  Google Scholar 

  164. Khurana RN, Merrill P, Yeh S, et al. Extension study of the safety and efficacy of CLS-TA for treatment of macular oedema associated with non-infectious uveitis (MAGNOLIA). Br J Ophthalmol. 2021. https://doi.org/10.1136/bjophthalmol-2020-317560.

    Article  Google Scholar 

  165. Fischer MD, Michalakis S, Wilhelm B, et al. Safety and vision outcomes of subretinal gene therapy targeting cone photoreceptors in achromatopsia: a nonrandomized controlled trial. JAMA Ophthalmol. 2020;138(6):643–51. https://doi.org/10.1001/jamaophthalmol.2020.1032.

    Article  Google Scholar 

  166. Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849–60. https://doi.org/10.1016/s0140-6736(17)31868-8.

    Article  CAS  Google Scholar 

  167. Cehajic-Kapetanovic J, Xue K, Martinez-Fernandez de la Camara C, et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat Med, 2020, 26(3): 354–359. https://doi.org/10.1038/s41591-020-0763-1.

  168. Lam BL, Davis JL, Gregori NZ, et al. Choroideremia gene therapy phase 2 clinical trial: 24-month rEsults. Am J Ophthalmol. 2019;197:65–73. https://doi.org/10.1016/j.ajo.2018.09.012.

    Article  CAS  Google Scholar 

  169. da Cruz L, Fynes K, Georgiadis O, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018;36(4):328–37. https://doi.org/10.1038/nbt.4114.

    Article  CAS  Google Scholar 

  170. Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509–16. https://doi.org/10.1016/s0140-6736(14)61376-3.

    Article  Google Scholar 

  171. Mehat MS, Sundaram V, Ripamonti C, et al. Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration. Ophthalmology. 2018;125(11):1765–75. https://doi.org/10.1016/j.ophtha.2018.04.037.

    Article  Google Scholar 

  172. Ho AC, Chang TS, Samuel M, et al. Experience with a subretinal cell-based therapy in patients with geographic atrophy secondary to age-related macular degeneration. Am J Ophthalmol. 2017;179:67–80. https://doi.org/10.1016/j.ajo.2017.04.006.

    Article  Google Scholar 

  173. Heier JS, Ho AC, Samuel MA, et al. Safety and efficacy of subretinally administered palucorcel for geographic atrophy of age-related macular degeneration: phase 2b study. Ophthalmol Retina. 2020;4(4):384–93. https://doi.org/10.1016/j.oret.2019.11.011.

    Article  Google Scholar 

  174. Sung Y, Lee MJ, Choi J, et al. Long-term safety and tolerability of subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium in Asian Stargardt disease patients. Br J Ophthalmol. 2021;105(6):829–37. https://doi.org/10.1136/bjophthalmol-2020-316225.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Science & Technology Department of Sichuan Province (China) funding project (No. 2021YFS0221) and the postdoctoral research funding of West China Hospital, Sichuan University, China (grant number 2020HXBH044).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Lixiang Wang conducted literature review and wrote the draft of the manuscript. Hui Zhang revised the draft. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hui Zhang.

Ethics declarations

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, H. Ocular barriers as a double-edged sword: preventing and facilitating drug delivery to the retina. Drug Deliv. and Transl. Res. 13, 547–567 (2023). https://doi.org/10.1007/s13346-022-01231-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-022-01231-5

Keywords

Navigation