Discharge of elongated grains in silos under rotational shear

Tivadar Pongó, Tamás Börzsönyi, and Raúl Cruz Hidalgo
Phys. Rev. E 106, 034904 – Published 21 September 2022
PDFHTMLExport Citation

Abstract

The discharge of elongated particles from a silo with rotating bottom is investigated numerically. The introduction of a slight transverse shear reduces the flow rate Q by up to 70% compared with stationary bottom, but the flow rate shows a modest increase by further increasing the external shear. Focusing on the dependency of flow rate Q on orifice diameter D, the spheres and rods show two distinct trends. For rods, in the small-aperture limit Q seems to follow an exponential trend, deviating from the classical power-law dependence. These macroscopic observations are in good agreement with our earlier experimental findings [Phys. Rev. E 103, 062905 (2021)]. With the help of the coarse-graining methodology we obtain the spatial distribution of the macroscopic density, velocity, kinetic pressure, and orientation fields. This allows us detecting a transition from funnel to mass flow pattern caused by the external shear. Additionally, averaging these fields in the region of the orifice reveals that the strong initial decrease in Q is mostly attributed to changes in the flow velocity, while the weakly increasing trend at higher rotation rates is related to increasing packing fraction. Similar analysis of the grain orientation at the orifice suggests a correlation of the flow rate magnitude with the vertical orientation and the packing fraction at the orifice with the order of the grains. Lastly, the vertical profile of mean acceleration at the center of the silo denotes that the region where the acceleration is not negligible shrinks significantly due to the strong perturbation induced by the moving wall.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 7 June 2022
  • Accepted 16 August 2022

DOI:https://doi.org/10.1103/PhysRevE.106.034904

©2022 American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & ThermodynamicsCondensed Matter, Materials & Applied Physics

Authors & Affiliations

Tivadar Pongó1,2,*, Tamás Börzsönyi2, and Raúl Cruz Hidalgo1,*

  • 1Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31008 Pamplona, Spain
  • 2Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary

  • *Corresponding authors: pongo.tivadar@gmail.com; raulcruz@unav.es

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 106, Iss. 3 — September 2022

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×