Skip to main content

Advertisement

Log in

Silica sputtering by noble gas projectiles: elucidating the effect of cluster species with molecular dynamic simulation

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The interaction of gas cluster projectiles with the surface of the inorganic compounds is still not a fully understood issue. To clarify the features of silica surface sputtering by noble gas cluster projectiles of various species at normal and oblique incidences, molecular dynamics simulations are employed. The impacts of the Ne, Ar, and Kr clusters with the sizes N of 561 and 923 atoms and scaled kinetic energy E/N from 10 to 140 eV/atom are compared. It is found that the projectile energy per impact area unit E/S and per mass unit of cluster E/M are generalizing parameters of the sputtering efficiency of material in the form of scaled yield Y. The preferential sputtering of oxygen atoms is more sensitive to gas cluster species at normal incidence and decreases significantly with increasing projectile energy E/N. The regularities of the redistribution of the initial kinetic energy of projectiles between the scattered cluster atoms, ejected target atoms, and the target are revealed under the various impact conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yamada I (2015) Materials processing by cluster ion beams: history, technology, and applications. CRC Press, Boco Raton

    Book  Google Scholar 

  2. Popok VN (2011) Energetic cluster ion beams: modification of surfaces and shallow layers. Mater Sci Eng R Rep 72:137–157

    Article  Google Scholar 

  3. Ieshkin AE, Tolstoguzov AB, Korobeishchikov NG, Pelenovich VO, Chernysh VS (2022) Gas-dynamic sources of cluster ions for solving fundamental and applied problems. Phys Usp. https://doi.org/10.3367/UFNe.2021.06.038994

    Article  Google Scholar 

  4. Rzeznik L, Paruch R, Garrison BJ, Postawa Z (2013) Sputtering of benzene sample by large Ne, Ar and Kr clusters—molecular dynamics computer simulations. Acta Phys Pol A 123(5):825–827

    Article  CAS  Google Scholar 

  5. Mücksch C, Anders C, Gnaser H, Urbassek HM (2014) Dynamics of l-phenylalanine sputtering by argon cluster bombardment. J Phys Chem C 118:7962–7970

    Article  Google Scholar 

  6. Kusakari M, Gnaser H, Fujii M, Seki T, Aoki T, Matsuo J (2015) Molecular cluster emission in sputtering of amino acids by argon gas-cluster ions. Int J Mass Spectrom 383–384:31–37

    Article  Google Scholar 

  7. Delcorte A, Delmez V, Dupont-Gillain C, Lauzin C, Jefford H, Chundak M, Poleunis C, Moshkunov K (2020) Large cluster ions: soft local probes and tools for organic and bio surfaces. Phys Chem Chem Phys 22:17427–17447

    Article  CAS  PubMed  Google Scholar 

  8. Insepov Z, Yamada I, Sosnowski M (1998) Sputterring and smoothing of metal surface with energetic gas cluster beams. Mater Chem Phys 54:234–237

    Article  CAS  Google Scholar 

  9. Allen LP, Insepov Z, Fenner DB, Santeufemio C, Brooks W, Jones KS, Yamada I (2002) Craters on silicon surfaces created by gas cluster ion impacts. J Appl Phys 92:3671–3678

    Article  CAS  Google Scholar 

  10. Cheng YY, Lee CC (2009) Molecular dynamics simulations of argon cluster impacts on a nickel film surface. Nucl Instrum Methods Phys Res Sect B 267:1428–1431

    Article  CAS  Google Scholar 

  11. Aoki T, Seki T, Matsuo J (2010) Molecular dynamics simulations for gas cluster ion beam processes. Vacuum 84:994–998

    Article  CAS  Google Scholar 

  12. Nazarov AV, Chernysh VS, Nordlund K, Djurabekova F, Zhao J (2017) Spatial distribution of particles sputtered from single crystals by gas cluster ions. Nucl Instrum Methods Phys Res B 406:518–522

    Article  CAS  Google Scholar 

  13. Sirotkin V (2021) Molecular dynamic simulation of rutile surface bombardment by argon cluster ions. Vacuum 189:110255

    Article  CAS  Google Scholar 

  14. Tian J, Zhou W, Feng Q, Zheng J (2018) Molecular dynamics simulations with electronic stopping can reproduce experimental sputtering yields of metals impacted by large cluster ions. Appl Surf Sci 435:65–71

    Article  CAS  Google Scholar 

  15. Seah MP (2013) Universal equation for argon gas cluster sputtering yields. J Phys Chem C 117:12622

    Article  CAS  Google Scholar 

  16. Cumpson PJ, Portoles JF, Barlow AJ, Sano N (2013) Accurate argon cluster-ion sputter yields: measured yields and effect of the sputter threshold in practical depth-profiling by x-ray photoelectron spectroscopy and secondary ion mass spectrometry. J Appl Phys 114:124313

    Article  Google Scholar 

  17. Korobeishchikov NG, Nikolaev IV, Roenko MA, Atuchin VV (2018) Precise sputtering of silicon dioxide by argon cluster ion beams. Appl Phys A 124:833

    Article  Google Scholar 

  18. Paruch R, Postawa Z, Garrison BJ (2015) Seduction of finding universality in sputtering yields due to cluster bombardment of solids. Acc Chem Res 48:2529–2536

    Article  CAS  PubMed  Google Scholar 

  19. Aoki T, Matsuo J, Takaoka G, Yamada I (2003) Cluster species and cluster size dependence of damage formation by cluster ion impact. Nucl Instrum Methods Phys Res B 206:861–865

    Article  CAS  Google Scholar 

  20. Nazarov AV, Chernysh VS, Zavilgelsky AD, Shemukhin AA, Lopez-Cazalilla A, Djurabekova F, Nordlund K (2021) The cluster species effect on the noble gas cluster interaction with solid surfaces. Surf Interfaces 26:101397

    Article  CAS  Google Scholar 

  21. Samela J, Nordlund K, Keinonen J, Popok VN, Campbell EEB (2007) Argon cluster impacts on layered silicon, silica, and graphite surfaces. Eur Phys J D 43:181–184

    Article  CAS  Google Scholar 

  22. Samela J, Nordlund K, Popok VN, Campbell EEB (2008) Origin of complex impact craters on native oxide coated silicon surfaces. Phys Rev B 77:075309

    Article  Google Scholar 

  23. Samela J, Nordlund K (2010) Classical molecular dynamics simulations of hypervelocity nanoparticle impacts on amorphous silica. Phys Rev B 81:054108

    Article  Google Scholar 

  24. Anders C, Urbassek HM (2010) Effect of molecular dissociation energy on the sputtering of molecular targets. J Phys Chem C 114:5499–5505

    Article  CAS  Google Scholar 

  25. Romanyuk O, Gordeev I, Paszuk A, Supplie O, Stoeckmann JP, Houdkova J, Ukraintsev E, Bartoš I, Jiříček P, Hannappel T (2020) GaP/Si(001) interface study by XPS in combination with Ar gas cluster ion beam sputtering. Appl Surf Sci 514:145903

    Article  CAS  Google Scholar 

  26. Skryleva EA, Senatulin BR, Kiselev DA, Ilina TS, Podgorny DA, Parkhomenko YuN (2021) Ar gas cluster ion beam assisted XPS study of LiNbO3 Z cut surface. Surf Interfaces 26:101428

    Article  CAS  Google Scholar 

  27. Yancey DF, Reinhardt C (2019) Damage and repair of organic and inorganic surfaces by Ar+ion andgas cluster ion beam sputtering. J Electron Spectrosc Relat Phenom 231:104–108

    Article  CAS  Google Scholar 

  28. Korobeishchikov NG, Nikolaev IV, Atuchin VV, Prosvirin IP, Tolstogouzov A, Pelenovich V, Fu DJ (2021) Borate nonlinear optical single crystal surface finishing by argon cluster ion sputtering. Surf Interfaces 27:101520

    Article  CAS  Google Scholar 

  29. Korobeishchikov NG, Stishenko PV, Popenko YA, Roenko MA, Nikolaev IV (2017) Interaction of accelerated argon cluster ions with a silicon dioxide surface. In: AIP conference proceedings 1876 (2017) 020064

  30. Bahn SR, Jacobsen KW (2002) An object-oriented scripting interface to a legacy electronic structure code. Comput Sci Eng 4:56–66

    Article  CAS  Google Scholar 

  31. Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of silicon. Phys Rev B 31:5262–5271

    Article  CAS  Google Scholar 

  32. Watanabe T, Ohdomari I (1999) Modeling of SiO2/Si(100) interface structure by using extended Stillinger–Weber potential. Thin Solid Films 343–344:370–373

    Article  Google Scholar 

  33. van Beest BWH, Kramer GJ, van Santen RA (1990) Force fields for silicas and aluminophosphates based on ab initio calculations. Phys Rev Lett 64:1955–1958

    Article  PubMed  Google Scholar 

  34. Tersoff J (1988) Empirical interatomic potential for silicon with improved elastic properties. Phys Rev B 38:9902–9905

    Article  CAS  Google Scholar 

  35. Munetoh S, Motooka T, Moriguchi K, Shintani A (2007) Interatomic potential for Si–O systems using Tersoff parameterization. Comput Mater Sci 39:334–339

    Article  CAS  Google Scholar 

  36. van Duin CT, Strachan A, Stewman S, Zhang Q, Xu X, Goddard WA (2003) ReaxFFSiO reactive force field for silicon and silicon oxide systems. J Phys Chem A 107:3803–3811

    Article  Google Scholar 

  37. Yu J, Sinnott SB, Phillpot SR (2007) Charge optimized many-body potential for the Si∕SiO2 system. Phys Rev B 75:085311

    Article  Google Scholar 

  38. Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in matter, vol 1. Pergamon, New York

    Google Scholar 

  39. Djurabekova F, Fridlund C, Nordlund K (2020) Defect and density evolution under high-fluence ion irradiation of Si/SiO2 heterostructures. Phys Rev Mater 4:013601

    Article  CAS  Google Scholar 

  40. LAMMPS Benchmarks, available at: http://lammps.sandia.gov/bench.html#potentials.

  41. Paruch RJ, Postawa Z, Garrison BJ (2016) Physical basis of energy per cluster atom in the universal concept of sputtering. J Vac Sci Technol B 34(3):03H105

    Article  Google Scholar 

  42. Restrepo OA, Delcorte A (2013) Argon cluster sputtering of a hybrid metal−organic surface: a microscopic view. J Phys Chem C 117:1189–1196

    Article  CAS  Google Scholar 

  43. Popok VN, Samela J, Nordlund K, Campbell EEB (2010) Stopping of energetic argon cluster ions in graphite: Role of cluster momentum and charge. Phys Rev B 82:201403

    Article  Google Scholar 

  44. Steinberger R, Walter J, Greunz T, Duchoslav J, Arndt M, Molodtsov S, Meyer DC, Stifter D (2015) XPS study of the effects of long-term Ar+ ion and Ar cluster sputtering on the chemical degradation of hydrozincite and iron oxide. Corros Sci 99:66–75

    Article  CAS  Google Scholar 

  45. Simpson R, White RG, Watts JF, Baker MA (2017) XPS investigation of monoatomic and cluster argon ion sputtering of tantalum pentoxide. Appl Surf Sci 405:79–87

    Article  CAS  Google Scholar 

  46. Ellsworth AA, Young CN, Stickle WF, Walker AV (2017) New horizons in sputter depth profiling inorganics with giant gas cluster sources: niobium oxide thin films. Surf Interface Anal 49(10):991–999

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Russian Science Foundation under Grant No. 21-19-00046. The Novosibirsk State University Computer Center is gratefully acknowledged for providing supercomputer facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Korobeishchikov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korobeishchikov, N.G., Stishenko, P.V., Nikolaev, I.V. et al. Silica sputtering by noble gas projectiles: elucidating the effect of cluster species with molecular dynamic simulation. Plasma Chem Plasma Process 42, 1223–1235 (2022). https://doi.org/10.1007/s11090-022-10286-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-022-10286-8

Keywords

Navigation