Skip to main content
Log in

Security aspects of device-to-device (D2D) networks in wireless communication: a comprehensive survey

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Very soon, trillions of wireless gadgets will be linked to billions of people, resulting in an overloaded spectrum. Device-to-device (D2D) wireless communication offers a new paradigm for addressing these impending issues by permitting the transmission of data between proximity devices. However, if the D2D communication system is not secured, the quality-of-service may be disrupted by a variety of security assaults. Furthermore, the system will become unreliable, posing a hurdle to D2D’s expansion. In this work, we look into the security features of D2D communication, which are crucial for its widespread adoption. This article provides an in-depth review of the conventional security features of D2D communication, as well as associated issues. This work identifies the possible solutions to be carried out and the future directions from existing research work by analyzing security architecture, security threats, existing algorithms, open security challenges, and limitations. The fundamental goal of this effort is to help related researchers to understand D2D security and privacy concerns in a nutshell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Doppler, K., Ribeiro, C. B., & Kneckt, J. (2011). Advances in D2D communications: Energy efficient service and device discovery radio. In 2011 2nd International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE) (pp. 1–6). https://doi.org/10.1109/WIRELESSVITAE.2011.5940857.

  2. Doppler, K., Rinne, M., Wijting, C., Ribeiro, C. B., & Hugl, K. (2009). Device-to-device communication as an underlay to LTE-advanced networks. IEEE Communications Magazine, 47(12), 42–49. https://doi.org/10.1109/MCOM.2009.5350367

    Article  Google Scholar 

  3. Li, Z., Moisio, M., Uusitalo, M. A., Lunden, P., Wijting, C., Moya, F. S., Yaver, A., & Venkatasubramanian, V. (2014). Overview on initial METIS D2D Concept. In 2014 1st international conference on 5G for ubiquitous connectivity (5GU) (203–208). https://doi.org/10.4108/icst.5gu.2014.258096.

  4. Chai, Y., Du, Q., & Ren, P. (2013). Partial time-frequency resource allocation for device-to-device communications underlaying cellular networks. IEEE International Conference on Communications (ICC), 2013, 6055–6059. https://doi.org/10.1109/ICC.2013.6655570

    Article  Google Scholar 

  5. Ali, K. S., ElSawy, H., & Alouini, M. (2016). Modeling cellular networks with full-duplex D2D communication: A Stochastic Geometry Approach. IEEE Transactions on Communications, 64(10), 4409–4424. https://doi.org/10.1109/TCOMM.2016.2601912

    Article  Google Scholar 

  6. Lin, X., Andrews, J. G., Ghosh, A., & Ratasuk, R. (2014). An overview of 3GPP device-to-device proximity services. IEEE Communications Magazine, 52(4), 40–48. https://doi.org/10.1109/MCOM.2014.6807945

    Article  Google Scholar 

  7. Andreev, S., Pyattaev, A., Johnsson, K., Galinina, O., & Koucheryavy, Y. (2014). Cellular traffic offloading onto network-assisted device-to-device connections. IEEE Communications Magazine, 52(4), 20–31. https://doi.org/10.1109/MCOM.2014.6807943

    Article  Google Scholar 

  8. Zhao, P., Feng, L., Yu, P., Li, W., & Qiu, X. (2017). A social-aware resource allocation for 5G device-to-device multicast communication. IEEE Access, 5, 15717–15730. https://doi.org/10.1109/ACCESS.2017.2731805

    Article  Google Scholar 

  9. Lien, S.-Y., Chien, C.-C., Tseng, F.-M., & Ho, T.-C. (2016). 3GPP device-to-device communications for beyond 4G cellular networks. IEEE Communications Magazine, 54(3), 29–35. https://doi.org/10.1109/MCOM.2016.7432168

    Article  Google Scholar 

  10. Lin, X., Ratasuk, R., Ghosh, A., & Andrews, J. G. (2014). Modeling, analysis, and optimization of multicast device-to-device transmissions. IEEE Transactions on Wireless Communications, 13(8), 4346–4359. https://doi.org/10.1109/TWC.2014.2320522

    Article  Google Scholar 

  11. Pappalardo, I., Quer, G., Rao, B. D., & Zorzi, M. (2016). Caching strategies in heterogeneous networks with D2D, small BS and macro BS communications. IEEE International Conference on Communications (ICC), 2016, 1–6. https://doi.org/10.1109/ICC.2016.7511330

    Article  Google Scholar 

  12. Mumtaz, S., & Rodriguez, J. (2014). Introduction to D2D communication. In: Mumtaz, S., & Rodriguez, J. (Eds.) Smart device to smart device communication (pp. 1–22). Cham: Springer. https://doi.org/10.1007/978-3-319-04963-2_1.

  13. Gregori, M., Gómez-Vilardebó, J., Matamoros, J., & Gündüz, D. (2016). Wireless content caching for small cell and D2D networks. IEEE Journal on Selected Areas in Communications, 34(5), 1222–1234. https://doi.org/10.1109/JSAC.2016.2545413

    Article  Google Scholar 

  14. Alam, M., Yang, D., Rodriguez, J., & Abd-alhameed, R. A. (2014). Secure device-to-device communication in LTE-A. IEEE Communications Magazine, 52(4), 66–73. https://doi.org/10.1109/MCOM.2014.6807948

    Article  Google Scholar 

  15. Bai, B., Wang, L., Han, Z., Chen, W., & Svensson, T. (2016). Caching based socially-aware D2D communications in wireless content delivery networks: A hypergraph framework. IEEE Wireless Communications, 23(4), 74–81. https://doi.org/10.1109/MWC.2016.7553029

    Article  Google Scholar 

  16. Yu, S., Ejaz, W., Guan, L., et al. (2017). Resource allocation schemes in d2d communications: overview, classification, and challenges. Wireless Personal Communications, 96, 303–322. https://doi.org/10.1007/s11277-017-4168-5

    Article  Google Scholar 

  17. Lien, S.-Y., Chien, C.-C., Liu, G.S.-T., Tsai, H.-L., Li, R., & Wang, Y. J. (2016). Enhanced LTE device-to-device proximity services. IEEE Communications Magazine, 54(12), 174–182. https://doi.org/10.1109/MCOM.2016.1500670CM

    Article  Google Scholar 

  18. Asadi, A., Wang, Q., & Mancuso, V. (2014). A survey on Device-to-Device communication in cellular networks. IEEE Communications Surveys & Tutorials, 16(4), 1801–1819. https://doi.org/10.1109/COMST.2014.2319555

    Article  Google Scholar 

  19. Liu, J., Kato, N., Ma, J., & Kadowaki, N. (2015). Device-to-device communication in LTE-advanced networks: A survey. IEEE Communications Surveys & Tutorials, 17(4), 1923–1940. https://doi.org/10.1109/COMST.2014.2375934

    Article  Google Scholar 

  20. Goratti, L., Gomez, K. M., Fedrizzi, R., & Rasheed, T. (2013). A novel device-to-device communication protocol for public safety applications. IEEE Globecom Workshops (GC Wkshps), 2013, 629–634. https://doi.org/10.1109/GLOCOMW.2013.6825058

    Article  Google Scholar 

  21. Mach, P., Becvar, Z., & Vanek, T. (2015). In-Band device-to-device communication in OFDMA cellular networks: A survey and challenges. IEEE Communications Surveys & Tutorials, 17(4), 1885–1922. https://doi.org/10.1109/COMST.2015.2447036

    Article  Google Scholar 

  22. Fodor, G., Roger, S., Rajatheva, N., Slimane, S. B., Svensson, T., Popovski, P., Da Silva, J. M. B., & Ali, S. (2016). An overview of device-to-device communications technology components in METIS. IEEE Access, 4, 3288–3299. https://doi.org/10.1109/ACCESS.2016.2585188

    Article  Google Scholar 

  23. Rawat, P., Haddad, M., & Altman, E. (2015). Towards efficient disaster management: 5G and device to device communication. In 2015 2nd International conference on information and communication technologies for disaster management (ICT-DM) (pp. 79–87). https://doi.org/10.1109/ICT-DM.2015.7402056.

  24. Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232. https://doi.org/10.1109/ACCESS.2015.2461602

    Article  Google Scholar 

  25. Sun, W., Ström, E. G., Brännström, F., Sui, Y., & Sou, K. C. (2014). D2D-based V2V communications with latency and reliability constraints. IEEE Globecom Workshops (GC Wkshps), 2014, 1414–1419. https://doi.org/10.1109/GLOCOMW.2014.7063632

    Article  Google Scholar 

  26. Cheng, P., Deng, L., Yu, H., Xu, Y., & Wang, H. (2012). Resource allocation for cognitive networks with D2D communication: An evolutionary approach. IEEE Wireless Communications and Networking Conference (WCNC), 2012, 2671–2676. https://doi.org/10.1109/WCNC.2012.6214252

    Article  Google Scholar 

  27. Liang, L., Li, G. Y., & Xu, W. (2017). Resource allocation for D2D-enabled vehicular communications. IEEE Transactions on Communications, 65(7), 3186–3197. https://doi.org/10.1109/TCOMM.2017.2699194

    Article  Google Scholar 

  28. Meng, Y., Jiang, C., Chen, H.-H., & Ren, Y. (2017). Cooperative device-to-device communications: Social networking perspectives. IEEE Network, 31(3), 38–44. https://doi.org/10.1109/MNET.2017.1600081NM

    Article  Google Scholar 

  29. Abrardo, A., Fodor, G., & Tola, B. (2015). Network coding schemes for device-to-device communications based relaying for cellular coverage extension. In 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (pp. 670–674). https://doi.org/10.1109/SPAWC.2015.7227122.

  30. Li, Z., Moisio, M., Uusitalo, M. A., Lundén, P., Wijting, C., Moya, F. S., Yaver, A., & Venkatasubramanian, V. Overview on initial METIS D2D concept. In 1st International Conference on 5G for Ubiquitous Connectivity (pp. 203–208). https://doi.org/10.4108/icst.5gu.2014.258096.

  31. Bagheri, H., Sartori, P., Desai, V., Classon, B., Al-Shalash, M., & Soong, A. (2015). Device-to-device proximity discovery for LTE systems. IEEE International Conference on Communication Workshop (ICCW), 2015, 591–595. https://doi.org/10.1109/ICCW.2015.7247245

    Article  Google Scholar 

  32. Alkurd, R., Shubair, R. M., & Abualhaol, I. (2014). Survey on device-to-device communications: Challenges and design issues. In 2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS) (pp. 361–364). https://doi.org/10.1109/NEWCAS.2014.6934057.

  33. Safdar, G. A., Ur Rehman, M., & Chaudhry, M. A. R. (2022). Introduction to d2d communications. In Interference mitigation in device‐to‐device communications (pp. 1–12). Springer. https://doi.org/10.1002/9781119788829.ch1.

  34. Yang, M. J., Lim, S. Y., Park, H. J., & Park, N. H. (2013). Solving the data overload: Device-to-device bearer control architecture for cellular data offloading. IEEE Vehicular Technology Magazine, 8(1), 31–39. https://doi.org/10.1109/MVT.2012.2234052

    Article  Google Scholar 

  35. Noura, M., & Nordin, R. (2016). A survey on interference management for device-to-device (D2D) communication and its challenges in 5G networks. Journal of Network and Computer Applications, 71, 130–150. https://doi.org/10.1016/j.jnca.2016.04.021

    Article  Google Scholar 

  36. Raghothaman, B., Deng, E., Pragada, R., Sternberg, G., Deng, T., & Vanganuru, K. (2013). Architecture and protocols for LTE-based device to device communication. In 2013 International Conference on Computing, Networking and Communications (ICNC) (pp. 895–899). https://doi.org/10.1109/ICCNC.2013.6504208.

  37. Tehrani, M. N., Uysal, M., & Yanikomeroglu, H. (2014). Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions. IEEE Communications Magazine, 52(5), 86–92. https://doi.org/10.1109/MCOM.2014.6815897

    Article  Google Scholar 

  38. Zhou, K., Gui, J., & Xiong, N. (2017). Improving cellular downlink throughput by multi-hop relay-assisted outband D2D communications. J Wireless Com Network. https://doi.org/10.1186/s13638-017-0998-9

    Article  Google Scholar 

  39. Rêgo, M. G. d. S., Maciel, T. F., Barros, H. d. H. M., Cavalcanti, F. R. P., & Fodor, G. (2012). Performance analysis of power control for device-to-device communication in cellular MIMO systems. In 2012 International Symposium on Wireless Communication Systems (ISWCS) (pp. 336–340). https://doi.org/10.1109/ISWCS.2012.6328385.

  40. Xing, H., & Hakola, S. (2010). The investigation of power control schemes for a device-to-device communication integrated into OFDMA cellular system. In 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 1775–1780) https://doi.org/10.1109/PIMRC.2010.5671643.

  41. Cheng, X., Li, Y., Ai, B., Yin, X., & Wang, Q. (2015). Device-to-device channel measurements and models: A survey. IET communications, 9(3), 312–325. https://doi.org/10.1049/iet-com.2014.0442

    Article  Google Scholar 

  42. Kim, K.-W., & Oh, S.-J. (2014). An efficient implementation of the ITU-R channel model for device-to-device simulation. IEEE Communications Letters, 18(9), 1633–1636. https://doi.org/10.1109/LCOMM.2014.2344053

    Article  Google Scholar 

  43. Peng, M., Li, Y., Quek, T. Q. S., & Wang, C. (2014). Device-to-device underlaid cellular networks under rician fading channels. IEEE Transactions on Wireless Communications, 13(8), 4247–4259. https://doi.org/10.1109/TWC.2014.2314115

    Article  Google Scholar 

  44. Li, Y., Ai, B., Wang, Q., Zhong, Z., & Michelson, D. G. (2015). Three-dimensional modeling, simulation and evaluation of Device-to-Device channels. IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2015, 1808–1809. https://doi.org/10.1109/APS.2015.7305293

    Article  Google Scholar 

  45. Feng, D., Lu, L., Yuan-Wu, Y., Li, G. Y., Li, S., & Feng, G. (2014). Device-to-device communications in cellular networks. IEEE Communications Magazine, 52(4), 49–55. https://doi.org/10.1109/MCOM.2014.6807946

    Article  Google Scholar 

  46. Fodor, G., Dahlman, E., Mildh, G., Parkvall, S., Reider, N., Miklós, G., & Turányi, Z. (2012). Design aspects of network assisted device-to-device communications. IEEE Communications Magazine, 50(3), 170–177. https://doi.org/10.1109/MCOM.2012.6163598

    Article  Google Scholar 

  47. Lei, L., Zhong, Z., Lin, C., & Shen, X. (2012). Operator controlled device-to-device communications in LTE-advanced networks. IEEE Wireless Communications, 19(3), 96–104. https://doi.org/10.1109/MWC.2012.6231164

    Article  Google Scholar 

  48. Hong, J., Park, S., Kim, H., Choi, S., & Lee, K. B. (2013). Analysis of Device-to-Device discovery and link setup in LTE networks. In 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (pp. 2856–2860) https://doi.org/10.1109/PIMRC.2013.6666634.

  49. Fodor, G., Parkvall, S., Sorrentino, S., Wallentin, P., Lu, Q., & Brahmi, N. (2014). Device-to-device communications for national security and public safety. IEEE Access, 2, 1510–1520. https://doi.org/10.1109/ACCESS.2014.2379938

    Article  Google Scholar 

  50. Wang, M., & Yan, Z. (2017). A survey on security in D2D communications. Mobile Networks and Applications, 22(2), 195–208. https://doi.org/10.1007/s11036-016-0741-5

    Article  Google Scholar 

  51. Gandotra, P., Jha, R. K., & Jain, S. (2017). A survey on device-to-device (D2D) communication: Architecture and security issues. Journal of Network and Computer Applications, 78, 9–29. https://doi.org/10.1016/j.jnca.2016.11.002

    Article  Google Scholar 

  52. Hamoud, O. N., Kenaza, T., & Challal, Y. (2018). Security in device-to-device communications: A survey. IET Networks, 7(1), 14–22. https://doi.org/10.1049/iet-net.2017.0119

    Article  Google Scholar 

  53. Suraci, C., Pizzi, S., Garompolo, D., Araniti, G., Molinaro, A., & Iera, A. (2021). Trusted and secured D2D-aided communications in 5G networks. Ad Hoc Networks, 114, 1. https://doi.org/10.1016/j.adhoc.2020.102403

    Article  Google Scholar 

  54. Chow, M. C., & Ma, M. (2022). Secure d2d in 5G cellular networks: architecture, requirements and solution. In Advances in Computing, Informatics, Networking and Cybersecurity. Lecture Notes in Networks and Systems (Vol. 289, pp. 583–616). Cham: Springer. https://doi.org/10.1007/978-3-030-87049-2_20.

  55. Gaba, G. S., Kumar, G., Kim, T.-H., Monga, H., & Kumar, P. (2021). Secure device-to-device communications for 5g enabled internet of things applications. Computer Communications, 169, 114–128. https://doi.org/10.1016/j.comcom.2021.01.010

    Article  Google Scholar 

  56. Saxena, N., Kumbhar, F. H., & Roy, A. (2020). Exploiting Social Relationships for Trustworthy D2D Relay in 5G Cellular Networks. IEEE Communications Magazine, 58(2), 48–53. https://doi.org/10.1109/MCOM.001.1900089

    Article  Google Scholar 

  57. Basak, S., & Acharya, T. (2020). On energy efficient secure routing in multi-hop underlay D2D communications for IoT applications. Ad Hoc Networks, 108, 1. https://doi.org/10.1016/j.adhoc.2020.102275

    Article  Google Scholar 

  58. Khoshafa, M. H., Ngatched, T. M. N., Ahmed, M. H., & Ibrahim, A. (2020). Improving physical layer security of cellular networks using full-duplex jamming relay-aided D2D communications. IEEE Access, 8, 53575–53586. https://doi.org/10.1109/ACCESS.2020.2979848

    Article  Google Scholar 

  59. Wang, L., Tian, Y., Zhang, D., & Lu, Y. (2019). Constant-round authenticated and dynamic group key agreement protocol for D2D group communications. Information Sciences, 503, 61–71. https://doi.org/10.1016/j.ins.2019.06.067

    Article  Google Scholar 

  60. Wang, M., Yan, Z., Song, B., & Atiquzzaman, M. (2019) AAKA-D2D: anonymous authentication and key agreement protocol in D2D communications. In 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (pp. 1356–1362). https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00248.

  61. Chen, X., Zhao, Y., Li, Y., Chen, X., Ge, N., & Chen, S. (2018). Social trust aided D2D communications: Performance bound and implementation mechanism. IEEE Journal on Selected Areas in Communications, 36(7), 1593–1608. https://doi.org/10.1109/JSAC.2018.2825658

    Article  Google Scholar 

  62. Cao, M., Chen, D., Yuan, Z., Qin, Z., & Lou, C. (2018). A lightweight key distribution scheme for secure D2D communication. International Conference on Selected Topics in Mobile and Wireless Networking (MoWNeT), 2018, 1–8. https://doi.org/10.1109/MoWNet.2018.8428890

    Article  Google Scholar 

  63. Zhang, A., Wang, L., Ye, X., & Lin, X. (2017). Light-weight and robust security-aware D2D-assist data transmission protocol for mobile-health systems. IEEE Transactions on Information Forensics and Security, 12(3), 662–675. https://doi.org/10.1109/TIFS.2016.2631950

    Article  Google Scholar 

  64. Liu, Y., Wang, L., Raza Zaidi, S. A., Elkashlan, M., & Duong, T. Q. (2016). Secure D2D communication in large-scale cognitive cellular networks: A wireless power transfer model. IEEE Transactions on Communications, 64(1), 329–342. https://doi.org/10.1109/TCOMM.2015.2498171

    Article  Google Scholar 

  65. Zhang, A., Chen, J., Hu, R. Q., & Qian, Y. (2016). SeDS: Secure data sharing strategy for D2D communication in LTE-Advanced networks. IEEE Transactions on Vehicular Technology, 65(4), 2659–2672. https://doi.org/10.1109/TVT.2015.2416002

    Article  Google Scholar 

  66. Ometov, A., Orsino, A., Militano, L., Araniti, G., Moltchanov, D., & Andreev, S. (2016). A novel security-centric framework for D2D connectivity based on spatial and social proximity. Computer Networks, 107, 327–338. https://doi.org/10.1016/j.comnet.2016.03.013

    Article  Google Scholar 

  67. Zhang, R., Cheng, X., & Yang, L. (2015). Cooperation via spectrum sharing for physical layer security in device-to-device communications underlaying cellular networks. IEEE Global Communications Conference (GLOBECOM), 2015, 1–6. https://doi.org/10.1109/GLOCOM.2015.7417724

    Article  Google Scholar 

  68. Jayasinghe, K., Jayasinghe, P., Rajatheva, N., & Latva-aho, M. (2015). Physical layer security for relay assisted MIMO D2D communication. IEEE International Conference on Communication Workshop (ICCW), 2015, 651–656. https://doi.org/10.1109/ICCW.2015.7247255

    Article  Google Scholar 

  69. Shen, W., Hong, W., Cao, X., Yin, B., Shila, D. M., & Cheng, Y. (2014). Secure key establishment for Device-to-Device communications. IEEE Global Communications Conference, 2014, 336–340. https://doi.org/10.1109/GLOCOM.2014.7036830

    Article  Google Scholar 

  70. Zhang, H., Wang, T., Song, L., & Han, Z. (2014). Radio resource allocation for physical-layer security in D2D underlay communications. IEEE International Conference on Communications (ICC), 2014, 2319–2324. https://doi.org/10.1109/ICC.2014.6883669

    Article  Google Scholar 

  71. Yue, J., Ma, C., Yu, H., Yang, Z., & Gan, X. (2013). Secrecy-based channel assignment for device-to-device communication: An auction approach. International Conference on Wireless Communications and Signal Processing, 1, 1–6. https://doi.org/10.1109/WCSP.2013.6677244

    Article  Google Scholar 

  72. Hussein, A., El-Rabaie, S., & El-Mashed, M. G. (2021). Proactive discovery protocol with security enhancement for D2D communication system. Multimed Tools Appl, 80, 5047–5066. https://doi.org/10.1007/s11042-020-09799-1

    Article  Google Scholar 

  73. Lopes, A. P. G., & Gondim, P. R. L. (2020). Group authentication protocol based on aggregated signatures for D2D communication. Computer Networks, 178, 1. https://doi.org/10.1016/j.comnet.2020.107192

    Article  Google Scholar 

  74. Abro, A., Deng, Z., & Memon, K. A. (2019). A lightweight elliptic-Elgamal-based authentication scheme for secure device-to-device communication. Future Internet, 11(5), 1. https://doi.org/10.3390/fi11050108

    Article  Google Scholar 

  75. Tan, H., Song, Y., Xuan, S., Pan, S., & Chung, I. (2019). Secure D2D group authentication employing smartphone sensor behavior analysis. Symmetry, 11(8), 1. https://doi.org/10.3390/sym11080969

    Article  Google Scholar 

  76. Sun, Y., Cao, J., Ma, M., Li, H., Niu, B., & Li, F. (2019). Privacy-preserving device discovery and authentication scheme for D2D communication in 3GPP 5G HetNet. In International Conference on Computing, Networking and Communications (ICNC) (pp. 425–431). https://doi.org/10.1109/ICCNC.2019.8685499.

  77. Cao, J., Ma, M., Li, H., Ma, R., Sun, Y., Yu, P., & Xiong, L. (2020). A survey on security aspects for 3GPP 5G networks. IEEE Communications Surveys & Tutorials, 22(1), 170–195. https://doi.org/10.1109/COMST.2019.2951818

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angshuman Khan or Rupayan Das.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Availability of data

All data generated or analyzed during this study are included in this article.

Code availability

No code is used to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Das, R. Security aspects of device-to-device (D2D) networks in wireless communication: a comprehensive survey. Telecommun Syst 81, 625–642 (2022). https://doi.org/10.1007/s11235-022-00954-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-022-00954-7

Keywords

Navigation