Skip to main content
Log in

Nutritional value and end-use quality of durum wheat

  • Review
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Durum wheat (Triticum turgidum L.) is the only tetraploid species of wheat that has been used commercially and consumed as a food product in human diets. It is used in various ways for making several food products such as macaroni, pasta, spaghetti, semolina, couscous, and unleavened bread. Durum wheat is generally used for pasta making due to the sufficient amount of yellow pigment, protein content, and its gluten characteristic. The low molecular weight gluten subunit provides its extensibility. Durum wheat also has a high source of pro-vitamin A, antioxidants, carbohydrates, and non-starch polysaccharides. Due to anthocyanin and its antioxidant properties, it has been recognized as a healthy cereal crop and is recommended in the diet for those suffering from allergies, diabetes, and high blood cholesterol. The Glu-D1 locus is essential for the bread-making quality and in durum wheat it is absent. Efforts have been made by transferring the Glu-D1 locus to improve bread-making quality. Nutritional and end-use qualities are the two key determinants of durum products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Autran J, Feillet P (1987) Genetic and technological basis of protein quality for durum wheat in pasta. Agriculture Protein evoluation in cereals and legumes Com Europ Commun:59–71

  • Ban T, Watanabe N (2001) The effects of chromosomes 3A and 3B on resistance to Fusarium head blight in tetraploid wheat. Hereditas 135(2–3):95–99

    CAS  PubMed  Google Scholar 

  • Beccari G, Arellano C, Covarelli L, Tini F, Sulyok M, Cowger C (2019) Effect of wheat infection timing on Fusarium head blight causal agents and secondary metabolites in grain. Int J Food Microbiol 290:214–225

    Article  CAS  PubMed  Google Scholar 

  • Beleggia R, Platani C, Papa R, Di Chio A, Barros E, Mashaba C, Wirth J, Fammartino A, Sautter C, Conner S (2011) Metabolomics and food processing: from semolina to pasta. J Agric Food Chem 59:9366–9377

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya M, Erazo-Castrejón SV, Doehlert DC, McMullen MS (2002) Staling of bread as affected by waxy wheat flour blends. Cereal Chem 79:178–182

    Article  CAS  Google Scholar 

  • Bhave M, Morris CF (2008) Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Mol Biol 66:205–219

    Article  CAS  PubMed  Google Scholar 

  • Bishnoi SK, He X, Phuke RM, Kashyap PL, Alakonya A, Chhokkar V, Singh RP, Singh PK (2020) Karnal bunt: A re-emerging old foe of wheat. Front Plant Sci 11:1486

    Article  Google Scholar 

  • Björck I, Liljeberg H, Östman E (2000) Low glycaemic-index foods. Br J Nutr 83:S149–S155

    Article  PubMed  Google Scholar 

  • Boehm JD Jr, Ibba MI, Kiszonas AM, Morris CF (2017) End-use quality of CIMMYT-derived soft-kernel durum wheat germplasm: II. Dough strength and pan bread quality. Crop Sci 57:1485–1494

    Article  CAS  Google Scholar 

  • Boggini G, Pogna NE (1989) The breadmaking quality and storage protein composition of Italian durum wheat. J Cereal Sci 9:131–138

    Article  CAS  Google Scholar 

  • Borrelli G, De Leonardis A, Platani C, Troccoli A (2008) Distribution along durum wheat kernel of the components involved in semolina colour. J Cereal Sci 48:494–502

    Article  CAS  Google Scholar 

  • Brar GS, Fuentes-Dávila G, He X, Sansaloni CP, Singh RP, Singh PK (2018) Genetic mapping of resistance in hexaploid wheat for a quarantine disease: Karnal bunt. Front Plant Sci 9:1497

    Article  PubMed  PubMed Central  Google Scholar 

  • Brouns F, Theuwissen E, Adam A, Bell M, Berger A, Mensink R (2012) Cholesterol-lowering properties of different pectin types in mildly hyper-cholesterolemic men and women. Eur J Clin Nutr 66:591–599

    Article  CAS  PubMed  Google Scholar 

  • Brown-Guedira G, Grewal T, Dhaliwal HS, Nelson J, Singh H, Gill BS (2003) Mapping of a resistance gene effective against Karnal bunt pathogen of wheat. Theor Appl Genet 106:287–292

    Article  PubMed  Google Scholar 

  • Buerstmayr M, Buerstmayr H (2022) The effect of the Rht1 haplotype on Fusarium head blight resistance in relation to type and level of background resistance and in combination with Fhb1 and Qfhs.ifa-5A. Theor Appl Genet 135(6):1985–1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buerstmayr M, Huber K, Heckmann J, Steiner B, Nelson JC, Buerstmayr H (2012) Mapping of QTL for Fusarium head blight resistance and morphological and developmental traits in three backcross populations derived from Triticum dicoccum× Triticum durum. Theor Appl Genet 125:1751–1765

    Article  PubMed  PubMed Central  Google Scholar 

  • Buerstmayr M, Alimari A, Steiner B, Buerstmayr H (2013) Genetic mapping of QTL for resistance to Fusarium head blight spread (type 2 resistance) in a Triticum dicoccoides × Triticum durum backcross-derived population. Theor Appl Genet 126:2825–2834

    Article  CAS  PubMed  Google Scholar 

  • Buerstmayr M, Wagner C, Nosenko T, Omony J, Steiner B, Nussbaumer T, Mayer KFX, Buerstmayr H (2021) Fusarium head blight resistance in European winter wheat: insights from genome-wide transcriptome analysis BMC Genom PMID: 34167474

  • Carrillo J, Vazquez J, Orkellana J (1990) Relationship between gluten strength and glutenin proteins in durum wheat cultivars. Plant Breed 104:325–333

    Article  CAS  Google Scholar 

  • Carris LM, Castlebury LA, Goates BJ (2006) Nonsystemic bunt fungi—Tilletia indica and T. horrida: a review of history, systematics, and biology. Annu Rev Phytopathol 44:113–133

    Article  CAS  PubMed  Google Scholar 

  • Chhuneja P, Kaur S, Singh K, Dhaliwal HS (2008) Evaluation of Aegilops tauschii (Coss.) germplasm for Karnal bunt resistance in a screen house with simulated environmental conditions. Plant Genet Res 6:79–84

    Article  Google Scholar 

  • Cleary L, Brennan C (2006) The influence of a (1→ 3)(1→ 4)-β-d-glucan rich fraction from barley on the physico-chemical properties and in vitro reducing sugars release of durum wheat pasta. Int J Food Sci 41:910–918

    Article  CAS  Google Scholar 

  • Colasuonno P, Lozito ML, Marcotuli I, Nigro D, Giancaspro A, Mangini G, De Vita P, Mastrangelo AM, Pecchioni N, Houston K (2017) The carotenoid biosynthetic and catabolic genes in wheat and their association with yellow pigments. BMC Genom 18(1):1–18

    Article  Google Scholar 

  • Colasuonno P, Marcotuli I, Blanco A, Maccaferri M, Condorelli GE, Tuberosa R, Parada R, de Camargo AC, Schwember AR, Gadaleta A (2019) Carotenoid pigment content in durum wheat (Triticum turgidum L. var durum): an overview of quantitative trait loci and candidate genes. Front Plant Sci 10:1347

    Article  PubMed  PubMed Central  Google Scholar 

  • Crous P, Van Jaarsveld A, Castlebury L, Carris L, Frederick R, Pretorius Z (2001) Karnal bunt of wheat newly reported from the African continent. Plant Dis 85:561–561

    Article  CAS  PubMed  Google Scholar 

  • Dexter J, Edwards N (1998) The implications of frequently encountered grading factors on the processing quality of durum wheat. Tec Molit 52:553–566

    Google Scholar 

  • Dhaliwal HS (1983) Primary infection and further development of Karnal bunt of wheat. Indian J Agric Sci 53:239–244

    Google Scholar 

  • Dhaliwal H, Singh H (1997) Breeding for resistance to bunts and smuts: Indian Scenario. In: Bunts and Smuts of wheat: an International Symposium. North American Plant Protection Organization. Aug. 17–20, North Carolina, USA, pp 17–20

  • Digesù A, Platani C, Cattivelli L, Mangini G, Blanco A (2009) Genetic variability in yellow pigment components in cultivated and wild tetraploid wheats. J Cereal Sci 50:210–218

    Article  Google Scholar 

  • Duveiller E, Mezzalama M (2009) Karnal bunt screening for resistance and distributing KB free seed. International Maize and Wheat Improvement Center (CIMMYT), Mexico

  • Ellis RP, Cochrane MP, Dale MFB, Duffus CM, Lynn A, Morrison IM, Prentice RDM, Swanston JS, Tiller SA (1998) Starch production and industrial use. J Sci Food Agric 77:289–311

    Article  CAS  Google Scholar 

  • El-Nagar G, Clowes G, Tudoricǎ C, Kuri V, Brennan CS (2002) Rheological quality and stability of yogice cream with added inulin. Int J Dairy Technol 55:89–93

    Article  CAS  Google Scholar 

  • Fakhfakh M, Yahyaoui A, Rezgui S, Elias E, Daaloul A (2011) Inheritances of Fusarium head blight resistance in a cross involving local and exotic durum wheat cultivars. Crop Sci 51:2517–2524

    Article  Google Scholar 

  • Ficco DB, Mastrangelo AM, Trono D, Borrelli GM, De Vita P, Fares C, Beleggia R, Platani C, Papa R (2014) The colours of durum wheat: a review. Crop Pasture Sci 65:1–15

    Article  Google Scholar 

  • Garcia R, Kaid N, Vignaud C, Nicolas J (2000) Purification and some properties of catalase from wheat germ (Triticum aestivum L.). J Agric Food Chem 48:1050–1057

    Article  CAS  PubMed  Google Scholar 

  • Ghavami F, Elias EM, Mamidi S, Ansari O, Sargolzaei M, Adhikari T, Mergoum M, Kianian SF (2011) Mixed model association mapping for Fusarium head blight resistance in Tunisian-derived durum wheat populations. G3 Genes Genom Genet 1:209–218

    CAS  Google Scholar 

  • Giancaspro A, Giove SL, Zito D, Blanco A, Gadaleta A (2016) Mapping QTLs for Fusarium head blight resistance in an interspecific wheat population. Front Plant Sci 7:1381

    Article  PubMed  PubMed Central  Google Scholar 

  • Gladysz C, Lemmens M, Steiner B, Buerstmayr H (2007) Evaluation and genetic mapping of resistance to Fusarium head blight in Triticum dicoccoides. Isr J Plant Sci 55:263–266

    Article  Google Scholar 

  • Grizard D, Barthomeuf C (1999) Non-digestible oligosaccharides used as prebiotic agents: mode of production and beneficial effects on animal and human health. Reprod Nutr Dev 39:563–588

    Article  CAS  PubMed  Google Scholar 

  • Hatcher D, Kruger J (1993) Distribution of polyphenol oxidase in flour millstreams of Canadian common wheat classes milled to three extraction rates. Cereal Chem 70:51–51

    CAS  Google Scholar 

  • Hatcher D, Kruger J (1997) Simple phenolic acids in flours prepared from Canadian wheat: relationship to ash content, color, and polyphenol oxidase activity. Cereal Chem 74:337–343

    Article  CAS  Google Scholar 

  • Hentschel V, Kranl K, Hollmann J, Lindhauer MG, Böhm V, Bitsch R (2002) Spectrophotometric determination of yellow pigment content and evaluation of carotenoids by high-performance liquid chromatography in durum wheat grain. J Agric Food Chem 50:6663–6668

    Article  CAS  PubMed  Google Scholar 

  • International Grains Council [IGC] (2020) World Grain Statistics 2016. Available: https://www.igc.int/en/subscriptions/subscription.aspx. Accessed 21 May 2020

  • Jones DR (2007) Arguments for a low risk of establishment of Karnal bunt disease of wheat in Europe. Eur J Plant Pathol 118:93–104

    Article  Google Scholar 

  • Joppa L, Cantrell R (1990) Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Sci 30:1059–1064

    Article  CAS  Google Scholar 

  • Joppa L, McNeal F (1972) Development of D-genome disomic addition lines of durum wheat. Can J Genet Cytol 14:335–340

    Article  Google Scholar 

  • Joppa L, Williams N (1979) A Disomic-5D-nullisomic-5B substitution line of durum wheat 1. Crop Sci 19:509–511

    Article  Google Scholar 

  • Joppa LR, Bietz JA, McDonald C (1975) Development and characteristics of a disomic-1D addition line of durum wheat. Can J Genet Cytol 17(3):355–363. https://doi.org/10.1139/g75-047

    Article  CAS  Google Scholar 

  • Joppa L, Du C, Hart GE, Hareland GA (1997) Mapping gene (s) for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci 37:1586–1589

    Article  CAS  Google Scholar 

  • Joppa L, Josephides C, Youngs V (1983) Chromosomal location of genes affecting quality in durum wheat. In: Proceedings of the sixth international wheat genetics symposium/edited by Sadao Sakamoto,. Kyoto: Plant Germ-Plasm Institute, Faculty of Agriculture, Kyoto University 297–301

  • Joppa L, Klindworth D, Hareland G (1998) Transfer of high molecular weight glutenins from spring wheat to durum wheat. In: Wheat genetics international symposium proceedings

  • Joppa L (1973) Development of D-genome disomic substitution lines of Durum wheat (Triticum turgidum L.) In: Sears ER, Sears LM (eds.) Proc 4th Int Wheat Genet Symp, University of Missouri, pp 685–690

  • José MRJFV, Carrillo M (2005) Genetic bases of grain quality. Durum wheat breeding. CRC Press, Boca Raton, pp 381–408

    Google Scholar 

  • Kabbaj H, Sall AT, Al-Abdallat A, Geleta M, Amri A, Filali-Maltouf A, Belkadi B, Ortiz R, Bassi FM (2017) Genetic diversity within a global panel of durum wheat (Triticum durum) landraces and modern germplasm reveals the history of alleles exchange. Front Plant Sci 8:1277

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur M, Singh R, Kumar S, Mandhan RP, Sharma I (2016) Identification of QTL conferring Karnal bunt resistance in bread wheat. 15: 34–38

  • Kean EG, Bordenave N, Ejeta G, Hamaker BR, Ferruzzi MG (2011) Carotenoid bioaccessibility from whole grain and decorticated yellow endosperm sorghum porridge. J Cereal Sci 54:450–459

    Article  CAS  Google Scholar 

  • Klindworth D, Hareland G, Elias E, Faris J, Chao S, Xu S (2009) Agronomic and quality characteristics of two new sets of Langdon durum–wild emmer wheat chromosome substitution lines. J Cereal Sci 50:29–35

    Article  CAS  Google Scholar 

  • Konopka I, Kozirok W, Rotkiewicz D (2004) Lipids and carotenoids of wheat grain and flour and attempt of correlating them with digital image analysis of kernel surface and cross-sections. Food Res Int 37:429–438

    Article  CAS  Google Scholar 

  • Kumar S, Stack R, Friesen T, Faris J (2007) Identification of a novel Fusarium head blight resistance quantitative trait locus on chromosome 7A in tetraploid wheat. Phytopathology 97:592–597

    Article  CAS  PubMed  Google Scholar 

  • Liu C (1995a) Preliminary results of the Glu-D1 alleles on quality characteristics of durum wheat cultivar Langdon. 1: 1D (1B) substitution lines. J Genet Plant Breed 49:269–276

    Google Scholar 

  • Liu C (1995b) Preliminary results of the Glu-D1 alleles on quality characteristics of durum wheat cultivar Langdon. 2: 1D (1A) substitution lines. J Genet Breed 49(3):277–283

    Google Scholar 

  • Liu CY, Shepherd K, Gras P (1994a) Grain yield and quality characteristics of chromosome 1D and 1B substitution lines in durum wheat and their F2-derived progeny lines. I. Comparisons among the tetraploid phenotypes. J Cereal Sci 20:23–32

    Article  Google Scholar 

  • Liu CY, Shepherd K, Gras P (1994b) Grain yield and quality characteristics of chromosome 1D and 1B substitution lines in durum wheat and their F2-derived progeny lines. II. Preliminary comparisons with normal durum and bread wheats. J Cereal Sci 20:227–234

    Article  Google Scholar 

  • Manna F, Borrelli GM, Massardo DR, Wolf K, Alifano P, Del Giudice L, Di Fonzo N (1998) Differential expression of lipoxygenase genes among durum wheat cultivars. Cereal Res Commun 26:23–30

    Article  CAS  Google Scholar 

  • Marcotuli I, Colasuonno P, Hsieh YS, Fincher GB, Gadaleta A (2020) Non-starch polysaccharides in durum wheat: A review. Int J Mol Sci 21:2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mares-Perlman JA, Millen AE, Ficek TL, Hankinson SE (2002) The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease. Overview J Nutr 132:518S-524S

    PubMed  Google Scholar 

  • Martin C, Schoeneberg T, Vogelgsang S, Vincenti J, Bertossa M, Mauch-Mani B, Mascher F (2017) Factors of wheat grain resistance to fusarium head blight. Phytopathol Mediterr 56:154–166

    CAS  Google Scholar 

  • Mazzeo MF, Di Stasio L, D’Ambrosio C, Arena S, Scaloni A, Corneti S, Ceriotti A, Tuberosa R, Siciliano RA, Picariello G (2017) Identification of early represented gluten proteins during durum wheat grain development. J Agric Food Chem 65:3242–3250

    Article  CAS  PubMed  Google Scholar 

  • Medcalf D, Gilles K (1968) Structural characterization of a pantosan from water-insoluble portion of durum wheat endosperm. Cereal Chem 45:550–556

    CAS  Google Scholar 

  • Melnikova N, Kudryavtseva A, Kudryavtsev A (2012) Catalogue of alleles of gliadin-coding loci in durum wheat (Triticum durum Desf.). Biochimie 94:551–557

    Article  CAS  PubMed  Google Scholar 

  • Metakovsky E, Felix I, Branlard G (1997) Association between dough quality (W value) and certain gliadin alleles in French common wheat cultivars. J Cereal Sci 26:371–373

    Article  CAS  Google Scholar 

  • Mezzomo N, Tenfen L, Farias MS, Friedrich MT, Pedrosa RC, Ferreira SRS (2015) Evidence of anti-obesity and mixed hypolipidemic effects of extracts from pink shrimp (Penaeus brasiliensis and Penaeus paulensis) processing residue. J Supercrit Fluids 96:252–261

    Article  CAS  Google Scholar 

  • Miedaner T, Sieber AN, Desaint H, Buerstmayr H, Longin CFH, Würschum T (2017) The potential of genomic-assisted breeding to improve Fusarium head blight resistance in winter durum wheat. Plant Breed 136:610–619

    Article  CAS  Google Scholar 

  • Monaghan J, Snape J, Chojecki A, Kettlewell P (2001) The use of grain protein deviation for identifying wheat cultivars with high grain protein concentration and yield. Euphytica 122:309–317

    Article  CAS  Google Scholar 

  • Mujeeb-Kazi A, Fuentes-Davilla G, Gul A, Mirza JI (2006) Karnal bunt resistance in synthetic hexaploid wheats (SH) derived from durum wheat× Aegilops tauschii combinations and in some SH× bread wheat derivatives. Cereal Res Commun 34:1199–1205

    Article  Google Scholar 

  • Murray JC, Kiszonas AM, Wilson J, Morris CF (2016) Effect of soft kernel texture on the milling properties of soft durum wheat. Cereal Chem 93:513–517

    Article  CAS  Google Scholar 

  • Neukom H, Kuendig W, Deuel H (1962) The soluble wheat flour pentosans. Cereal Sci Today 7:112–125

    Google Scholar 

  • Ohm C, Brehmer M, Zentel R (2010) Liquid crystalline elastomers as actuators and sensors. Adv Mater 22:3366–3387

    Article  CAS  PubMed  Google Scholar 

  • Olmos S, Distelfeld A, Chicaiza O, Schlatter A, Fahima T, Echenique V, Dubcovsky J (2003) Precise mapping of a locus affecting grain protein content in durum wheat. Theor Appl Genet 107:1243–1251

    Article  CAS  PubMed  Google Scholar 

  • Otto A (2002) What is observed in single molecule SERS, and why? J Raman Spectrosc 33:593–598

    Article  CAS  Google Scholar 

  • Oudgenoeg G, Hilhorst R, Piersma SR, Boeriu CG, Gruppen H, Hessing M, Voragen AGJ, Laane C (2001) Peroxidase-mediated cross-linking of a tyrosine-containing peptide with ferulic acid. J Agric Food Chem 49:2503–2510

    Article  CAS  PubMed  Google Scholar 

  • Pandey V, Gupta AK, Singh M, Pandey D, Kumar A (2019) Complementary proteomics, genomics approaches identifies potential pathogenicity/virulence factors in Tilletia indica induced under the influence of host factor. Sci Rep. https://doi.org/10.1038/s41598-018-37810-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Payne PI (1987) Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu Rev Plant Physiol 38:141–153

    Article  CAS  Google Scholar 

  • Paznocht L, Kotíková Z, Orsák M, Lachman J, Martinek P (2019) Carotenoid changes of colored-grain wheat flours during bun-making. Food Chem 277:725–734

    Article  CAS  PubMed  Google Scholar 

  • Perlin A (1951) Isolation and composition of the soluble pentosans of wheat flours. Cereal Chem 28:370–381

    CAS  Google Scholar 

  • Pestka J (2010) Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. World Mycotoxin J 3:323–347

    Article  CAS  Google Scholar 

  • Prat N, Guilbert C, Prah U, Wachter E, Steiner B, Langin T, Robert O, Buerstmayr H (2017) QTL mapping of Fusarium head blight resistance in three related durum wheat populations. Theor Appl Genet 130:13–27

    Article  PubMed  Google Scholar 

  • Ruiz M, Bernal G, Giraldo P (2018) An update of low molecular weight glutenin subunits in durum wheat relevant to breeding for quality. J Cereal Sci 83:236–244

    Article  CAS  Google Scholar 

  • Rush CM, Stein JM, Bowden RL, Riemenschneider R, Boratynski T, Royer MH (2005) Status of Karnal bunt of wheat in the United States 1996 to 2004. Plant Dis 89:212–223

    Article  PubMed  Google Scholar 

  • Sari E, Berraies S, Knox RE, Singh AK, Ruan Y, Cuthbert RD, Pozniak CJ, Henriquez MA, Kumar S, Burt AJ (2018) High density genetic mapping of Fusarium head blight resistance QTL in tetraploid wheat. PLoS ONE 13:e0204362

    Article  PubMed  PubMed Central  Google Scholar 

  • Seib PA (1994) Wheat starch: Isolation, structure and properties. J Appl Glycosci 41:49–69

    CAS  Google Scholar 

  • Shaner G (2003) Epidemiology of Fusarium head blight of small grain cereals in North America. In: Leonard KJ, Bushnell WR (eds) Fusarium head blight of wheat and barley. Am Phytopathol Soc, St. Paul, pp 84–119

    Google Scholar 

  • Shewry P, Gilbert S, Savage A, Tatham A, Wan Y-F, Belton P, Wellner N, D’ovidio R, Bekes F, Halford N (2003a) Sequence and properties of HMW subunit 1Bx20 from pasta wheat (Triticum durum) which is associated with poor end use properties. Theor Appl Genet 106:744–750

    Article  CAS  PubMed  Google Scholar 

  • Shewry PR, Halford NG, Lafiandra D (2003b) Genetics of wheat gluten proteins. Adv Genet 49:111–184

    Article  CAS  PubMed  Google Scholar 

  • Shewry P, Halford N, Lafiandra D (2006) The high-molecular-weight subunits of glutenin. Gliadin Glutenin Unique Balance Wheat Qual 45:143–169

    Article  Google Scholar 

  • Soh H, Sissons M, Turner M (2006) Effect of starch granule size distribution and elevated amylose content on durum dough rheology and spaghetti cooking quality. Cereal Chem 83:513–519

    Article  CAS  Google Scholar 

  • Steffens J, Harel E, Hunt M (1994) Genetic engineering of plant secondary metabolism. In: Ellis BE, Kuroki GW, Stafford HA (eds) Polyphenol oxidase. Plenum Press, New York, pp 275–312

    Google Scholar 

  • Steiner B, Buerstmayr M, Wagner C, Danler A, Eshonkulov B, Ehn M, Buerstmayr H (2019) Fine-mapping of the Fusarium head blight resistance QTL Qfhs. ifa-5A identifies two resistance QTL associated with anther extrusion. Theor Appl Genet 132:2039–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suprayogi Y, Pozniak CJ, Clarke F, Clarke J, Knox R, Singh A (2009) Identification and validation of quantitative trait loci for grain protein concentration in adapted Canadian durum wheat populations. Theor Appl Genet 119:437–448

    Article  CAS  PubMed  Google Scholar 

  • Szabo-Hever A, Zhang Q, Friesen TL, Zhong S, Elias EM, Cai X, Jin Y, Faris JD, Chao S, Xu SS (2018) Genetic diversity and resistance to Fusarium head blight in synthetic hexaploid wheat derived from Aegilops tauschii and diverse Triticum turgidum subspecies. Front Plant Sci 9:1829

    Article  PubMed  PubMed Central  Google Scholar 

  • Tabbita F, Pearce S, Barneix AJ (2017) Breeding for increased grain protein and micronutrient content in wheat: ten years of the GPC-B1 gene. J Cereal Sci 73:183–191

    Article  CAS  Google Scholar 

  • Tan MK, Murray GM (2006) A molecular protocol using quenched FRET probes for the quarantine surveillance of Tilletia indica, the causal agent of Karnal bunt of wheat. Mycol Res 110:203–210

    Article  CAS  PubMed  Google Scholar 

  • Troccoli A, Borrelli G, De Vita P, Fares C, Di Fonzo N (2000) Mini review: durum wheat quality: a multidisciplinary concept. J Cereal Sci 32:99–113

    Article  Google Scholar 

  • Tudorica C, Kuri V, Brennan C (2002) Nutritional and physicochemical characteristics of dietary fiber enriched pasta. J Agric Food Chem 50:347–356

    Article  CAS  PubMed  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vignaux N, Doehlert DC, Elias EM, McMullen MS, Grant LA, Kianian SF (2005) Quality of spaghetti made from full and partial waxy durum wheat. Cereal Chem 82:93–100

    Article  CAS  Google Scholar 

  • Zhang W, Dubcovsky J (2008) Association between allelic variation at the phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theor Appl Genet 116:635–645

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Axtman JE, Faris JD, Chao S, Zhang Z, Friesen TL, Zhong S, Cai X, Elias EM, Xu SS (2014) Identification and molecular mapping of quantitative trait loci for Fusarium head blight resistance in emmer and durum wheat using a single nucleotide polymorphism-based linkage map. Mol Breed 34:1677–1687

    Article  CAS  Google Scholar 

  • Zhao M, Leng Y, Chao S, Xu SS, Zhong S (2018) Molecular mapping of QTL for fusarium head blight resistance introgressed into durum wheat. Theor Appl Genet 131(9):1939–1951

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Sheikh.

Additional information

Communicated by M. Taylor.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, P., Kaur, H., Tyagi, V. et al. Nutritional value and end-use quality of durum wheat. CEREAL RESEARCH COMMUNICATIONS 51, 283–294 (2023). https://doi.org/10.1007/s42976-022-00305-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-022-00305-x

Keywords

Navigation