Skip to main content
Log in

Optimization of stereo vision baseline and effects of canopy structure, pre-processing and imaging parameters for 3D reconstruction of trees

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Precision farming requires tree-canopy information for better management. Stereo vision is the technique to create a 3D model, and it needs to be adequately setup to avoid extreme data processing and unreliable results. Features detection is very important. Different parameters affect features in images. Because 3D accuracy is necessary, this study focused to investigate the effects of various baselines of a stereo camera on the well-known combination of feature detectors and descriptors and optimization of a stereo-vision-system for obtaining 3D-model of tree-canopy. Also, the effects of different parameters were investigated in RGB and Y color spaces. These parameters were three levels of density, two shapes of canopy (conic and ellipse), image rectification and un-distortion, metering mode, exposure time and ISO speed. The results showed that the best system was stereo-system with baseline of 12 cm and the best combination was SURF-BRISK. Also, SURF-FREAK and SURF-SURF combinations were appropriate afterwards. The precision value was 1 for the SURF-BRISK combination in the system with the baseline of 12 cm. The parameters including image rectification, metering mode, exposure time and ISO speed were affected by combinations performance. Images must be rectified before the implementation of detector algorithms. Use of the pattern mode and same exposure times and ISO speeds for both pair images were better. The recall values were decreased for various exposure times and ISO speeds. The results of algorithms were not affected by the tree-canopy shapes and density. So results can be used successfully for trees with larger size and different shapes and densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Boonsuk, W.: Investigating the effects of stereo camera baseline on the accuracy of 3D projection for industrial robotic applications. Int. J. Res. Eng. Innov. IJREI 8(2) (2016)

  2. Bouguet, J.Y.: Camera Calibration Toolbox for Matlab. Computational Vision at the California Institute of Technology (2004)

  3. Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly Media, New York (2008)

    Google Scholar 

  4. Buba, T.: Impacts of different tree species of different sizes on spatial distribution of herbaceous plants in the Nigerian Guinea Savannah ecological zone. Scientifica 2015, 106930 (2015)

    Article  Google Scholar 

  5. Canclini, A., Cesana, M., Redondi, A., Tagliasacchi, M., Ascenso, J., Cilla, R.: Evaluation of low-complexity visual feature detectors and descriptors. In: 18th International Conference on Digital Signal Processing (DSP), pp. 1–7 (2013)

  6. Dyer, J., Verri, G., Cupitt, J.: Multispectral imaging in reflectance and photo-induced luminescence modes: a user manual. The British Museum, Charisma Project; 2013, pp. 81–5. http://www.britishmuseum.org/pdf/charisma-multispectral-imaging-manual-2013.pdf (2013)

  7. Gaujoux, S., Ceribelli, C., Goudard, G., Khayat, A., Leconte, M., Massault, P.-P., Balagué, J., Dousset, B.: Best practices to optimize intra-operative photography. J. Surg. Res. (2015). https://doi.org/10.1016/j.jss.2015.11.048

    Article  Google Scholar 

  8. Gil, E., Escolà, A., Rosell, J.R., Planas, S., Val, L.: Variable rate application of plant protection products in vineyard using ultrasonic sensors. Crop Protect. 26, 1287–1297 (2007)

    Article  Google Scholar 

  9. Gil, E., Llorens, J., Llop, J., Fàbregas, X., Escolà, A., Rosell-Polo, J.R.: Variable rate sprayer. Part 2—vineyard prototype: design, implementation, and validation. Comput. Electron. Agric. 95, 136–150 (2013)

    Article  Google Scholar 

  10. Heikkila, J., Silven, O.: A four-step camera calibration procedure with implicit image correction. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1106–1112 (1997)

  11. Heinly, J., Dunn, E., Frahm J.-M.: Comparative evaluation of binary features. In: Computer Vision–ECCV, Springer, pp. 759–773 (2012).

  12. Işık, S., Ozkan, K.: A comparative evaluation of well-known feature detectors and descriptors. Int. J. Appl. Math. Electron. Comput. 3(1), 1–6 (2015)

    Article  Google Scholar 

  13. Jafari Malekabadi, A., Khojastehpour, M., Emadi, B.: Comparison of feature points detection algorithms in different color spaces in order to create 3D map of trees. Iran. J. Biosyst. Eng. 48, 55–69 (2017). ((In Persian)). https://doi.org/10.22059/ijbse.2017.61561

    Article  Google Scholar 

  14. Jafari Malekabadi, A., Khojastehpour, M., Emadi, B.: A comparative evaluation of combined feature detectors and descriptors in different color spaces for stereo image matching of tree. Sci. Hortic. 228, 187–195 (2018). https://doi.org/10.1016/j.scienta.2017.10.030

    Article  Google Scholar 

  15. Kaczmarek, A.L.: Stereo vision with equal baseline multiple camera set (EBMCS) for obtaining depth maps of plants. Comput. Electron. Agric. 135, 23–37 (2017). https://doi.org/10.1016/j.compag.2016.11.022

    Article  Google Scholar 

  16. Linaza, M.T., Posada, J., Bund, J., Eisert, P., Quartulli, M., Döllner, J., Pagani, A., Olaizola, G.I., Barriguinha, A., Moysiadis, T., Lucat, L.: Data-driven artificial intelligence applications for sustainable precision agriculture. Agronomy 11, 1227 (2021). https://doi.org/10.3390/agronomy11061227

    Article  Google Scholar 

  17. Lingua, A., Marenchino, D., Nex, F.: Performance analysis of the SIFT operator for automatic feature extraction and matching in photogrammetric applications. Sensors 9(5), 3745–3766 (2009)

    Article  Google Scholar 

  18. Liu, X., Chen, W., Madhusudanan, H., Du, L., Sun, Y.: Camera orientation optimization in stereo vision systems for low measurement error. IEEE/ASME Trans. Mechatr. 26(2), 1178–1182 (2021). https://doi.org/10.1109/TMECH.2020.3019305

    Article  Google Scholar 

  19. Llorens, J., Gil, E., Llop, J., Escolà, A.: Ultrasonic and LIDAR sensors for electronic canopy characterization in vineyards: advances to improve pesticide application methods. Sensors 11(2), 2177–2194 (2011)

    Article  Google Scholar 

  20. Loop, C., Zhang, Z.: Computing rectifying homographies for stereo vision. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. 1, 125–131 (1999)

    Google Scholar 

  21. Luo, L., Tang, Y., Lu, Q., Chen, X., Zhang, P., Zou, X.: A vision methodology for harvesting robot to detect cutting points on peduncles of double overlapping grape clusters in a vineyard. Comput. Ind. 99, 130–139 (2018)

    Article  Google Scholar 

  22. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  23. Pellicanò, N., Aldea, E., Le Hégarat-Mascle, S.: Wide baseline pose estimation from video with a density-based uncertainty model. Mach. Vis. Appl. 30, 1041–1059 (2019). https://doi.org/10.1007/s00138-019-01036-6

    Article  Google Scholar 

  24. Potje, G., Resende, G., Campos, M.: Towards an efficient 3D model estimation methodology for aerial and ground images. Mach. Vis. Appl. 28, 937–952 (2017). https://doi.org/10.1007/s00138-017-0875-x

    Article  Google Scholar 

  25. Rosell, J.R., Sanz, R.: A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Comput. Electron. Agric. 81, 124–141 (2012)

    Article  Google Scholar 

  26. Rovira-Mas, F., Saiz-Rubio, V., Cuenca-Cuenca, A.: Augmented perception for agricultural robots navigation. IEEE Sens. J. 21(10), 11712–11727 (2021). https://doi.org/10.1109/JSEN.2020.3016081

    Article  Google Scholar 

  27. Rovira-Mas, F., Wang, Q., Zhang, Q.: Design parameters for adjusting the visual field of binocular stereo cameras. Biosyst. Eng. 105(1), 59–70 (2010)

    Article  Google Scholar 

  28. Sato, T., Kanbara, M., Yokoya, N., Takemura, H.: Dense 3-D reconstruction of an outdoor scene by hundreds-baseline stereo using a hand-held video camera. Int. J. Comput. Vis. 47(1–3), 119–129 (2002)

    Article  MATH  Google Scholar 

  29. Shah, V., Hanson, R.J. & Gilmour, N.R.: Image optimization techniques using depth planes. Patent. 09704250 (2017)

  30. Shin, B.S., Mou, X., Mou, W., Wang, H.: Vision-based navigation of an unmanned surface vehicle with object detection and tracking abilities. Mach. Vis. Appl. 29, 95–112 (2018). https://doi.org/10.1007/s00138-017-0878-7

    Article  Google Scholar 

  31. Si, Y., Liu, G., Feng, J.: Location of apples in trees using stereoscopic vision. Comput. Electron. Agric. 112, 68–74 (2015)

    Article  Google Scholar 

  32. Smith, L.N., Zhang, W., Hansen, M.F., Hales, I.J., Smith, M.L.: Innovative 3D and 2D machine vision methods for analysis of plants and crops in the field. Comput. Ind. 97, 122–131 (2018). https://doi.org/10.1016/j.compind.2018.02.002

    Article  Google Scholar 

  33. Wang, C., Zou, X., Tang, Y., Luo, L., Feng, W.: Localisation of litchi in an unstructured environment using binocular stereo vision. Biosyst. Eng. 145, 39–51 (2016)

    Article  Google Scholar 

  34. Wang, J., Peng, C., Li, M., Chen, X., Du, S., & Li, Y.: Stereo matching optimization with multi-baseline trinocular camera model. In: IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–4 (2020). https://doi.org/10.1109/CCECE47787.2020.9255786.

  35. Xiao, Z., Wang, J., Han, L., Guo, S., Cui, Q.: Application of machine vision system in food detection. Front. Nutr. (2022). https://doi.org/10.3389/fnut.2022.888245

    Article  Google Scholar 

  36. Xiong, J., He, Zh., Lin, R., Liu, Zh., Bu, R., Yang, Zh., Peng, H., Zou, X.: Visual positioning technology of picking robots for dynamic litchi clusters with disturbance. Comput. Electron. Agric. 151, 226–237 (2018)

    Article  Google Scholar 

  37. Yang, Sh., Gao, Y., Liu, Z., Zhang, G.: A calibration method for binocular stereo vision sensor with short-baseline based on 3D flexible control field. Opt. Lasers Eng. 124, 105817 (2020). https://doi.org/10.1016/j.optlaseng.2019.105817

    Article  Google Scholar 

  38. Yeh, Y.-H.F., Lai, T.-C., Liu, T.-Y., Liu, C.-C., Chung, W.-C., Lin, T.-T.: An automated growth measurement system for leafy vegetables. Biosyst. Eng. 117, 43–50 (2014)

    Article  Google Scholar 

  39. Yousif, A.N., Ibrahim, H.M., Alwan, S.J., Majid, MSh.: Stereo vision development for high performance on stereo systems. Int. J. Nonlinear Anal. Appl. 13(1), 2731–2738 (2022). https://doi.org/10.22075/IJNAA.2022.5996

    Article  Google Scholar 

  40. Yu, Y., Yang, Q., Wang, X.: 3D imaging application in the studies of micro air vehicles. Comput. Ind. 64(9), 1178–1185 (2013)

    Article  Google Scholar 

  41. Zaman, Q.U., Salyani, M.: Effects of foliage density and ground speed on ultrasonic measurement of citrus tree volume. Appl. Eng. Agric. 20(2), 173–178 (2004)

    Article  Google Scholar 

  42. Zhai, Zh., Zhu, Zh., Du, Y., Song, Zh., Mao, E.: Multi- crop-row detection algorithm based on binocular vision. Biosyst. Eng. 150, 89–103 (2016)

    Article  Google Scholar 

  43. Zhang, W., Hansen, M.F., Smith, M., Smith, L., Grieve, B.: Photometric stereo for three-dimensional leaf venation extraction. Comput. Ind. 98, 56–67 (2018). https://doi.org/10.1016/j.compind.2018.02.006

    Article  Google Scholar 

  44. Zhang, Z.: Determining the epipolar geometry and its uncertainty: a review. Int. J. Comput. Vis. 27(2), 161–1195 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of Ferdowsi University of Mashhad (Grant No. 31500).

Funding

This work was supported by Ferdowsi University of Mashhad (Grant No. 31500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Khojastehpour.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari Malekabadi, A., Khojastehpour, M. Optimization of stereo vision baseline and effects of canopy structure, pre-processing and imaging parameters for 3D reconstruction of trees. Machine Vision and Applications 33, 87 (2022). https://doi.org/10.1007/s00138-022-01333-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-022-01333-7

Keywords

Navigation