Issue 11, 2022

Sequentially regular polymer acceptors featuring flexible spacers for high-performance and mechanically robust all-polymer solar cells

Abstract

Developing high-performance and mechanically robust polymer solar cells (PSCs) is crucial for realizing wearable power sources. While efficient all-polymer solar cells (all-PSCs) can be fabricated from polymerized small-molecule acceptors (PSMAs) with high optical absorption and electron mobilities, they still show limited mechanical robustness. Here, we achieve highly efficient and mechanically robust all-PSCs by designing a PSMA (PYFS-Reg) containing sequence-regular flexible spacers (FSs). The regular incorporation of the FS units into PSMAs is essential in simultaneously improving the electrical and mechanical properties of blend films. As a result, all-PSCs featuring PYFS-Reg achieve a high power conversion efficiency (PCE = 16.1%) and stretchability (crack onset strain (COS) = 22.4%), outperforming PSMAs without FSs (i.e., PYBDT, PCE = 12.6% and COS = 11.7%) or with randomly distributed FSs (i.e., PYFS-Ran, PCE = 12.2% and COS = 18.1%). Importantly, these all-PSCs are fabricated by an environmentally benign, non-halogenated solvent process. To further demonstrate their feasible applications in wearable devices, we construct intrinsically stretchable (IS) all-PSCs by using PYFS-Reg-based active layers, which exhibit a high PCE (10.6%) and excellent device stretchability (strain at PCE80% = 36.7%).

Graphical abstract: Sequentially regular polymer acceptors featuring flexible spacers for high-performance and mechanically robust all-polymer solar cells

Supplementary files

Article information

Article type
Paper
Submitted
06 Aug 2022
Accepted
12 Sep 2022
First published
16 Sep 2022
This article is Open Access
Creative Commons BY-NC license

Energy Environ. Sci., 2022,15, 4672-4685

Sequentially regular polymer acceptors featuring flexible spacers for high-performance and mechanically robust all-polymer solar cells

J. Lee, C. Sun, S. Lee, Geon-U. Kim, S. Li, C. Wang, T. Kim, Y. Kim and B. J. Kim, Energy Environ. Sci., 2022, 15, 4672 DOI: 10.1039/D2EE02523J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements