Skip to main content

Advertisement

Log in

Estimating Sensible and Latent Heat Fluxes over an Inland Water Body Using Optical and Microwave Scintillometers

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Observations of turbulent heat fluxes over inland water bodies are scarce despite being critical to adequate lake parametrization for numerical weather forecast and climate models. Scintillometry has allowed for the regional (~ km2) estimation of turbulent heat fluxes, but few studies have assessed its performance over water. We compare scintillometry-derived turbulent heat fluxes over an 85-km2 dimictic boreal hydropower reservoir in eastern Canada (50.69° N, 63.24° W) with data from a raft-based eddy-covariance system. To the best of our knowledge, this is one of the first studies to quantify evaporation over an inland water body using a set of optical and microwave scintillometers. The scintillometer beam path extended 1.7 km over a section of the reservoir with depths of up to 100 m, from 14 August to 9 October 2019. Forty-nine days of data were retained. This study quantifies the impact of atmospheric stability on the derived fluxes and explores the use of temperature differences at the water–air interface from a point close to the centre of the scintillometer beam to properly estimate the direction of the sensible heat flux. The scintillometry approaches were well correlated with the eddy-covariance estimations for sensible heat fluxes (R2 up to 0.86, 32% bias), while the agreement decreased for latent heat fluxes (R2 up to 0.59, 69% bias). The scintillometer measured much larger latent heat fluxes than the eddy-covariance set-up. These results may be due to the larger footprint of the scintillometers capturing greater heterogeneity in the fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Source-area contour lines correspond to a percentage of the total measured fluxes. For example 80% of the fluxes measured with the scintillometers during the whole study period came from the largest zone in red. Footprints were calculated using the model from Kljun et al. (2015), and adapted for the scintillometer beams, as in Isabelle et al. (2020)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aguirre F, Hartogensis O, Meza F, Suárez F (2022) Refinements and analysis of the optical-microwave scintillometry method applied to measurements over a vineyard in Chile. Water 14(3):474

    Article  Google Scholar 

  • Arya SP (2001) Introduction to micrometeorology. Academic Press, San Diego

    Google Scholar 

  • Barr AG, Morgenstern K, Black TA, McCaughey JH, Nesic Z (2006) Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux. Agric for Meteorol 140(1):322–337

    Article  Google Scholar 

  • Blanken PD, Rouse WR, Culf AD, Spence C, Boudreau LD, Jasper JN, Kochtubajda B, Schertzer WM, Marsh P, Verseghy D (2000) Eddy covariance measurements of evaporation from Great Slave Lake, Northwest Territories, Canada. Water Resour Res 36(4):1069–1077

    Article  Google Scholar 

  • Bosveld F, van der Vliet J, Monna W (1999) The KNMI Garderen experiment: micro-meteorological observations 1988–1989. Sci Rep WR 9903:57

    Google Scholar 

  • Bouin MN, Legain D, Traulle O, Belamari S, Caniaux G, Fiandrino A, Lagarde F, Barrie J, Moulin E, Bouhours G (2012) Using scintillometry to estimate sensible heat fluxes over water: first insights. Boundary-Layer Meteorol 143(3):451–480

    Article  Google Scholar 

  • Braam M, Bosveld FC, Moene AF (2012) On Monin–Obukhov scaling in and above the atmospheric surface layer: the complexities of elevated scintillometer measurements. Boundary-Layer Meteorol 144(2):157–177

    Article  Google Scholar 

  • Brutsaert W (1982) Evaporation into the atmosphere: theory, history and applications. Springer, Amsterdam

    Book  Google Scholar 

  • Brutsaert W (2005) Hydrology: an introduction. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51(5):2388–2397

    Article  Google Scholar 

  • Eaton AK, Rouse WR, Lafleur PM, Marsh P, Blanken PD (2001) Surface energy balance of the Western and Central Canadian subarctic: variations in the energy balance among five major terrain types. J Clim 14(17):3692–3703

    Article  Google Scholar 

  • Feng JW, Liu HZ, Sun JH, Wang L (2016) The surface energy budget and interannual variation of the annual total evaporation over a highland lake in Southwest China. Theor Appl Climatol 126(1–2):303–312

    Article  Google Scholar 

  • Finkelstein PL, Sims PF (2001) Sampling error in eddy correlation flux measurements. J Geophys Res: Atmos 106(D4):3503–3509

    Article  Google Scholar 

  • Foken T (2008) The energy balance closure problem: an overview. Ecol Appl 18(6):1351–1367

    Article  Google Scholar 

  • Fournier J, Thiboult A, Nadeau DF, Vercauteren N, Anctil F, Parent A-C, Strachan IB, Tremblay A (2021) Evaporation from boreal reservoirs: a comparison between eddy covariance observations and estimates relying on limited data. Hydrol Process 35(8):e14335

    Article  Google Scholar 

  • Han P-F, Wang X-S, Jin X, Hu BX (2018) Estimating lake-water evaporation from data of large-aperture scintillometer in the Badain Jaran Desert, China, with two comparable methods Proceedings of the International Association of Hydrological Sciences. In: 8th international symposium on integrated water resources management, IWRM 2018, June 13, 2018–June 15, 2018, Beijing, China 2018, vol 379. Copernicus GmbH, City, pp 433–442

  • Hartogensis OK, Watts CJ, Rodriguez JC and De Bruin HAR (2003) Derivation of an effective height for scintillometers: La Poza experiment in Northwest Mexico. J. Hydrometeorol. 4(5):915–928

  • Hill RJ (1989) Implications of Monin–Obukhov similarity theory for scalar quantities. J Atmos Sci 46(14):2236–2244

    Article  Google Scholar 

  • Hsieh C-I, Katul G, Chi T-W (2000) An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv Water Resour 23(7):765–772

    Article  Google Scholar 

  • Hydro-Québec (2007) Complexe de la Romaine – Étude d'impact sur l'environnement, 314

  • Isabelle P-E, Nadeau DF, Perelet AO, Pardyjak ER, Rousseau AN, Anctil F (2020) Application and evaluation of a two-wavelength scintillometry system for operation in a complex shallow boreal-forested valley. Boundary-Layer Meteorol 174(3):341–370

    Article  Google Scholar 

  • Kenny WT, Bohrer G, Morin TH, Vogel CS, Matheny AM, Desai AR (2017) A numerical case study of the implications of secondary circulations to the interpretation of eddy-covariance measurements over small lakes. Boundary-Layer Meteorol: Int J Phys Chem Biol Process Atmos Boundary Layer 165(2):311–332

    Article  Google Scholar 

  • Kleissl J, Hartogensis OK, Gomez JD (2010) Test of scintillometer saturation correction methods using field experimental data. Boundary-Layer Meteorol 137(3):493–507

    Article  Google Scholar 

  • Kljun N, Calanca P, Rotach M, Schmid H (2015) A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci Model Dev 8(11):3695–3713

    Article  Google Scholar 

  • Kooijmans LMJ, Hartogensis OK (2016) Surface-layer similarity functions for dissipation rate and structure parameters of temperature and humidity based on eleven field experiments. Boundary-Layer Meteorol: Int J Phys Chem Biol Process Atmos Boundary Layer 160(3):501–527

    Article  Google Scholar 

  • Li D, Bou-Zeid E, De Bruin HAR (2012) Monin-Obukhov similarity functions for the structure parameters of temperature and humidity. Boundary-Layer Meteorol: Int J Phys Chem Biol Process Atmos Boundary Layer 145(1):45–67

    Article  Google Scholar 

  • Liebe HJ, Hufford GA, Cotton MG (1993) Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz. In: AGARD CONFERENCE PROCEEDINGS AGARD CP, no 542, p 3

  • Lüdi A, Beyrich F, Matzler C (2005) Determination of the turbulent temperature–humidity correlation from scintillometric measurements. Boundary-Layer Meteorol 117(3):525–550

    Article  Google Scholar 

  • Markfort CD, Perez ALS, Thill JW, Jaster DA, Porte-Agel F, Stefan HG (2010) Wind sheltering of a lake by a tree canopy or bluff topography. Water Resour Res 46(3):W03530

    Article  Google Scholar 

  • Mauder M, Foken T (2011) Documentation and instruction manual of the eddy-covariance software package TK3. Univ., Abt. Mikrometeorologie, Bayreuth

  • McGloin R, McGowan H, McJannet D, Cook F, Sogachev A, Burn S (2014) Quantification of surface energy fluxes from a small water body using scintillometry and eddy covariance. Water Resour Res 50(1):494–513

    Article  Google Scholar 

  • Meijninger WML, Beyrich F, Ludi A, Kohsiek W, De Bruin HAR (2006) Scintillometer-based turbulent fluxes of sensible and latent heat over a heterogeneous land surface—a contribution to LITFASS-2003. Boundary-Layer Meteorol 121(1):89–110

    Article  Google Scholar 

  • Messager ML, Lehner B, Grill G, Nedeva I, Schmitt O (2016) Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat Commun 7(1):1–11

    Article  Google Scholar 

  • Miller SD, Hristov T, Edson J, Friehe C (2008) Platform motion effects on measurements of turbulence and air-sea exchange over the open ocean. J Atmos Ocean Technol 25(9):1683–1694

    Article  Google Scholar 

  • Mironov D, Heise E, Kourzeneva E, Ritter B, Schneider N, Terzhevik A (2010) Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO. Boreal Environ Res 15:218–230

    Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci USSR 151(163):e187

    Google Scholar 

  • Monin A, Yaglom AM (1971) Statistical fluid mechanics, vol 1 and 2. MIT Press, Cambridge, MA, p 11

    Google Scholar 

  • Moukomla S (2015) The estimation of the surface energy balance of the North American Laurentian Great Lakes using satellite remote sensing and MERRA reanalysis, University of Colorado at Boulder

  • Muñoz-Sabater J, Dutra E, Agustí-Panareda A, Albergel C, Arduini G, Balsamo G, Boussetta S, Choulga M, Harrigan S, Hersbach H, Martens B, Miralles DG, Piles M, Rodríguez-Fernández NJ, Zsoter E, Buontempo C, Thépaut JN (2021) ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst Sci Data 13(9):4349–4383

    Article  Google Scholar 

  • Nordbo A, Launiainen S, Mammarella I, Lepparanta M, Huotari J, Ojala A, Vesala T (2011) Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. J Geophys Res - Part D - Atmos 116(D2):D02119

    Google Scholar 

  • Nordbo A, Järvi L, Vesala T (2012) Revised eddy covariance flux calculation methodologies—effect on urban energy balance. Tellus b: Chem Phys Meteorol 64(1):18184

    Article  Google Scholar 

  • Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D (2006) Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3(4):571–583

    Article  Google Scholar 

  • Poggio LP, Furger M, Prevot ASH, Graber WK, Andreas EL (2000) Scintillometer wind measurements over complex terrain. J Atmos Ocean Technol 17(1):17–26

    Article  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival J-M, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D and Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Chang Biol. 11(9):1424–1439

  • RPG (2014) RPG-MWSC-160, Microwave scintillometer operation & software guide, 87

  • Samain B, Pauwels VRN, Defloor W (2012) Continuous time series of catchment-averaged sensible heat flux from a large aperture scintillometer: efficient estimation of stability conditions and importance of fluxes under stable conditions. J Hydrometeorol 13(2):423–442

    Article  Google Scholar 

  • Schmid HP (1994) Source areas for scalars and scalar fluxes. Boundary-Layer Meteorol 67(3):293–318

    Article  Google Scholar 

  • Spank U, Hehn M, Keller P, Koschorreck M, Bernhofer C (2019) A season of eddy-covariance fluxes above an extensive water body based on observations from a floating platform. Boundary-Layer Meteorol 174(3):433–464

    Article  Google Scholar 

  • Spence C, Rouse WR, Worth D, Oswald C (2003) Energy budget processes of a small Northern Lake. J Hydrometeorol 4(4):694–701

    Article  Google Scholar 

  • Strachan IB, Tremblay A, Pelletier L, Tardif S, Turpin C, Nugent KA (2016) Does the creation of a boreal hydroelectric reservoir result in a net change in evaporation? J Hydrol 540:886–899

    Article  Google Scholar 

  • Su Z (2002) The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol Earth Syst Sci 6(1):85–99

    Article  Google Scholar 

  • Suárez F, Lobos F, De La Fuente A, Vilà-Guerau de Arellano J, Prieto A, Meruane C, Hartogensis O (2020) E-DATA: a comprehensive field campaign to investigate evaporation enhanced by advection in the hyper-arid Altiplano. Water 12(3):745

    Article  Google Scholar 

  • Venäläinen A, Heikinheimo M, Tourula T (1998) Latent heat flux from small sheltered lakes. Boundary-Layer Meteorol 86(3):355–377

    Article  Google Scholar 

  • Venäläinen A, Frech M, Heikinheimo M, Grelle A (1999) Comparison of latent and sensible heat fluxes over boreal lakes with concurrent fluxes over a forest: implications for regional averaging. Agric for Meteorol 98–99:535–546

    Article  Google Scholar 

  • Vercauteren N, Bou-Zeid E, Huwald H, Parlange MB, Brutsaert W (2009) Estimation of wet surface evaporation from sensible heat flux measurements. Water Resour Res 45(6):W06424

    Article  Google Scholar 

  • Verseghy DL, MacKay MD (2017) Offline implementation and evaluation of the Canadian small lake model with the Canadian land surface scheme over Western Canada. J Hydrometeorol 18(6):1563–1582

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14(3):512–526

    Article  Google Scholar 

  • Ward HC (2017) Scintillometry in urban and complex environments: a review. Meas Sci Technol 28(6):064005

    Article  Google Scholar 

  • Ward HC, Evans JG, Hartogensis OK, Moene AF, De Bruin HAR, Grimmond CSB (2013) A critical revision of the estimation of the latent heat flux from two-wavelength scintillometry. Q J R Meteorol Soc 139(676):1912–1922

    Article  Google Scholar 

  • Ward HC, Evans JG, Grimmond CSB, Bradford J (2015) Infrared and millimetre-wave scintillometry in the suburban environment—part 1: structure parameters. Atmos Meas Tech 8(3):1385–1405

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106(447):85–100

    Article  Google Scholar 

  • Whiteman CD, Allwine KJ (1986) Extraterrestrial solar radiation on inclined surfaces. Environ Softw 1(3):164–169

    Article  Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99(1):127–150

    Article  Google Scholar 

  • Wyngaard JC, Izumi Y, Collins SA (1971) Behavior of the refractive-index-structure parameter near the ground*. J Opt Soc Am 61(12):1646

    Article  Google Scholar 

  • Wyngaard JC (1973) On the surface-layer turbulence. Workshop on micrometeorology 1973. American Meteorological Society, City, pp 101–149

  • Zhang G, Zhang J, Meng P (2021) Estimation of kilometer-scale heat fluxes over a hilly area in Northern China using an optical-microwave scintillometer. Agric Water Manag 244:106582

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Hydro-Québec for their collaboration and more specifically Alain Tremblay and François Bilodeau. They are also grateful to Dany Crépault, Denis Jobin, Philippe Richard, Benjamin Bouchard, Annie-Claude Parent, and Martin Lapointe for their help in designing, deploying, maintaining, and dismantling this ambitious experimental set-up. Work was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) through grant RDCPJ508080-16, "Observation and modelling of net evaporation from a boreal hydroelectric complex (water footprint)".

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Funding

Funding was provided by Gulf Research Program (Grant no. RDCPJ508080-16) and Canadian Foundation for Innovation (Grant no. 32922).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel F. Nadeau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierre, A., Isabelle, PE., Nadeau, D.F. et al. Estimating Sensible and Latent Heat Fluxes over an Inland Water Body Using Optical and Microwave Scintillometers. Boundary-Layer Meteorol 185, 277–308 (2022). https://doi.org/10.1007/s10546-022-00732-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-022-00732-7

Keywords

Navigation