Skip to main content
Log in

Link prediction in complex networks based on communication capacity and local paths

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Link prediction is one of the most essential and significant research issues in network science, which aims at finding unknown, missing or future links in complex networks. Numerous similarity-based algorithms have been widely applied due to low computational cost and high prediction accuracy. To achieve a good balance between prediction accuracy and computational complexity, we design a novel link prediction algorithm to predict potential links based on Communication Capabilities and Local Paths (CCLP). The core idea of the proposed algorithm is that the similarity of node pairs is closely bound up with the amount of resources transmitted between them. In this algorithm, we introduce communicability network matrix to calculate the resource transmission capability of nodes, and then integrate it with local paths to measure the amount of resources transferred between nodes. We conduct several groups of comparative experiments on 12 real-world networks to validate the effectiveness of the proposed algorithm. Experimental results demonstrate that CCLP has achieved better performance than four classical similarity indices and five popular algorithms.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets utilized in this paper are public and can be downloaded from the following web sites. https://www-personal.umich.edu/mejn/netdata/ and https://vlado.fmf.uni-lj.si/pub/networks/pajek/data/gphs.htm.

References

  1. V. Martinez, F. Berzal, J.C. Cubero, ACM Comput. Surv. 49(4), 1–33 (2017)

    Article  Google Scholar 

  2. H. Kautz, B. Selman, M. Shah, Commun. ACM 40(3), 63–65 (1997)

    Article  Google Scholar 

  3. S. Chakrabarti, B.E. Dom, S.R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, D. Gibson, J. Kleinberg, Computer 32(8), 60–67 (1999)

    Article  Google Scholar 

  4. L.Y. Lü, M. Medo, C.H. Yeung, Y.C. Zhang, Z.K. Zhang, T. Zhou, Phys. Rep. 519(1), 1–49 (2012)

    Article  ADS  Google Scholar 

  5. H. Ding, I. Takigawa, H. Mamitsuka, S. Zhu, Brief. Bioinform. 15(5), 734–747 (2014)

    Article  Google Scholar 

  6. M. Bogaert, M. Ballings, D. Van den Poel, Decis. Support Syst. 82, 26–34 (2016)

    Article  Google Scholar 

  7. T. Zhou, L.Y. Lü, Y.C. Zhang, Eur. Phys. J. B 71(4), 623–630 (2009)

    Article  ADS  Google Scholar 

  8. S.X. Liu, X.S. Ji, C.X. Liu, Y. Bai, Physica A 479, 174–183 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  9. Y.B. Yao, R.S. Zhang, F. Yang, J.X. Tang, Y.N. Yuan, R.J. Hu, Physica A 510, 52–67 (2018)

    Article  ADS  Google Scholar 

  10. X. Liu, S.X. Liu, H.C. Chen, K. Wang, Entropy 21(9), 863 (2019)

    Article  ADS  Google Scholar 

  11. A. Kumar, S. Mishra, S.S. Singh, K. Singh, B. Biswas, Physica A 545, 123790 (2020)

    Article  Google Scholar 

  12. L. Getoor, C.P. Diehl, ACM SIGKDD Explor. Newslett. 7(2), 3–12 (2005)

    Article  Google Scholar 

  13. L.Y. Lü, T. Zhou, Physica A 390(6), 1150–1170 (2011)

    Article  ADS  Google Scholar 

  14. F. Lorrain, H.C. White, J. Math. Sociol. 1(1), 49–80 (1971)

    Article  Google Scholar 

  15. L.A. Adamic, E. Adar, Soc. Netw. 25(3), 211–230 (2003)

    Article  Google Scholar 

  16. L. Katz, Psychometrika 18, 39–43 (1953)

    Article  Google Scholar 

  17. G. Jeh, J. Widom, in Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM Press, New York, 2002), pp. 538–543

  18. L.Y. Lü, C.H. Jin, T. Zhou, Phys. Rev. E 80(4), 046122 (2009)

    Article  ADS  Google Scholar 

  19. W. Liu, L.Y. Lü, Europhys. Lett. 89(5), 58007 (2010)

    Article  ADS  Google Scholar 

  20. L.K. Yin, H.Y. Zheng, T. Bian, Y. Deng, Physica A 482, 699–712 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. E. Nasiri, A. Bouyer, E. Nourani, Eur. Phys. J. B 92(10), 228 (2019)

    Article  ADS  Google Scholar 

  22. X.M. Wu, J.S. Wu, Y.F. Li, Q. Zhang, Knowl-Based Syst. 195, 105740 (2020)

    Article  Google Scholar 

  23. M.X. Wang, X.Y. Lou, B.T. Cui, Eur. Phys. J. 94(2), 33 (2021)

    Article  ADS  Google Scholar 

  24. S.B. Li, J.W. Huang, J.H. Liu, T.P. Huang, H.H. Chen, Chaos 30(1), 013104 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Jalili, Y. Orouskhani, M. Asgari, N. Alipourfard, M. Perc, Roy. Soc. Open Sci. 4(2), 160863 (2017)

    Article  ADS  Google Scholar 

  26. S. Mallek, I. Boukhris, Z. Elouedi, E. Lefevre, in European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (Springer, 2017), pp. 201–211

  27. A. Clauset, C. Moore, M.E. Newman, Nature 453(7191), 98–101 (2008)

    Article  ADS  Google Scholar 

  28. R. Guimera, M.S. Pardo, Proc. Natl. Acad. Sci. USA 106(52), 22073–22078 (2009)

    Article  ADS  Google Scholar 

  29. P.F. Jiao, F. Cai, Y.D. Feng, W.J. Wang, Sci. Rep. 7(1), 8937 (2017)

    Article  ADS  Google Scholar 

  30. Z.Q. Wang, J.Y. Liang, R. Li, Knowl-Based Syst. 159, 72–85 (2018)

    Article  Google Scholar 

  31. G.F. Chen, H.B. Wang, Y.L. Fang, L. Jiang, Expert Syst. Appl. 188, 115991 (2022)

    Article  Google Scholar 

  32. E. Estrada, N. Hatano, Phys. Rev. E 77(3), 036111 (2018)

    Article  ADS  Google Scholar 

  33. E. Estrada, N. Hatano, M. Benzi, Phys. Rep. 54, 89–119 (2012)

    Article  ADS  Google Scholar 

  34. J.H. Wu, J. Shen, B. Zhou, X.Y. Zhang, B.H. Huang, Physica A 523, 966–1007 (2019)

    ADS  Google Scholar 

  35. Y. Liu, M. Tang, T. Zhou, Y. Do, Physica A 425, 289–298 (2016)

    Article  ADS  Google Scholar 

  36. T. Zhou, Y.L. Lee, G.N. Wang, Physica A 564, 125532 (2021)

    Article  Google Scholar 

  37. Z.L. Zhao, Z.Y. Guo, Y.H. Du, J. Ma, T.F. Li, R.S. Zhang, Expert Syst. Appl. 188, 116033 (2022)

    Article  Google Scholar 

  38. Q.Y. Shang, Y. Deng, K.H. Cheong, Inf. Sci. 577, 1162–179 (2021)

    Article  Google Scholar 

  39. J. Coleman, E. Katz, H. Menzel, Sociometry 20(4), 253–270 (1957)

    Article  Google Scholar 

  40. J.X. Yang, X.D. Zhang, Eur. Phys. J. B 90(8), 157 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  41. J. Duch, A. Arenas, Phys. Rev. E 72(2), 027104 (2005)

    Article  ADS  Google Scholar 

  42. L. Meng, G.Q. Xu, P.L. Yang, D.Q. Tu, J. Comput. Sci. Neth. 60, 101591 (2022)

    Article  Google Scholar 

  43. D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang, S. Sun, L. Ling, N. Zhang, G. Li, R. Chen, Nucleic Acids Res. 31(9), 2443–2450 (2003)

  44. L.Y. Lü, L.M. Pan, T. Zhou, H.E. Stanley, Proc. Natl. Acad. Sci. USA 112(8), 2325–2330 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  45. J.A. Hanley, B.J. McNeil, Radiology 143(1), 29–36 (1982)

    Article  Google Scholar 

  46. X.H. Yang, X. Yang, F. Ling, H.F. Zhang, D. Zhang, J. Xiao, Mod. Phys. Lett. B 32(29), 1850348 (2018)

    Article  ADS  Google Scholar 

  47. Y. Tian, H. Li, X.Z. Zhu, H. Tian, Int. J. Mod. Phys. B 33(22), 1950249 (2019)

    Article  ADS  Google Scholar 

  48. F. Aziz, H.J. Gul, I. Muhammad, I. Uddin, Physica A 557, 124980 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely and deeply thank the editor and the anonymous referees for their helpful comments and constructive suggestions. This work was supported by grants from the National Natural Science Foundation of China (Project No. 11871328) and the Shanghai Science and Technology Development Funds Soft Science Research Project (Grant No. 21692109800).

Author information

Authors and Affiliations

Authors

Contributions

JP and GX developed the theory and methodology; JP and XZ conducted simulated experiments and validation; CD wrote part of original draft; LM reviewed the manuscript; All authors discussed the results and collaborated in writing the manuscript.

Corresponding author

Correspondence to Guiqiong Xu.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Xu, G., Zhou, X. et al. Link prediction in complex networks based on communication capacity and local paths. Eur. Phys. J. B 95, 152 (2022). https://doi.org/10.1140/epjb/s10051-022-00415-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00415-9

Navigation