Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

No evidence for long-range male sex pheromones in two malaria mosquitoes

Abstract

Cues involved in mate seeking and recognition prevent hybridization and can be involved in speciation processes. In malaria mosquitoes, females of the two sibling species Anopheles gambiae s.s. and An. coluzzii mate in monospecific male swarms and hybrids are rare. Long-range sex pheromones driving this behaviour have been debated in literature but so far, no study has proven their existence or their absence. Here, we attempted to bring to light their existence. To put all the odds in our favour, we used different chemical ecology methods such as behavioural and electrophysiological assays as well chemical analyses, and we worked with mosquitoes at their optimal physiological mating state that is with swarming males during their natural swarming windows. Despite all our efforts, our results support the absence of long-range sex pheromones involved in swarm detection and recognition by females. We briefly discuss the implications of this finding in ecology, evolution and for control strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the olfactometer set-up.
Fig. 2: Mosquito activation rate, expressed as the proportion of females caught in both collecting boxes out of the total number released females for each of the four tested combinations.
Fig. 3: Mosquito choice, expressed as the proportion of females caught in one or the other collecting box out of the total number of ‘activated’ females for each test.
Fig. 4: Quantities of acetoin, sulcatone, octanal, nonanal and decanal collected with SPME fibres.
Fig. 5: Quantities of sulcatone, octanal, nonanal and decanal collected with Twisters, Tenax/Carbotrap or Porapack tubes.
Fig. 6: Mean electrophysiological responses of female An. coluzzii antennae to male swarm solvent extracts, recorded by GC–EAD.

Similar content being viewed by others

Data availability

The raw datasets are available online at https://doi.org/10.5281/zenodo.4719568.

Code availability

Script and codes are available online at https://doi.org/10.5281/zenodo.4719568.

References

  1. Alexander, R. D., Marshall, D. C. & Cooley, J. R. in The Evolution of Mating Systems in Insects and Arachnids (eds. Choe, J. C. & Crespi, B. J.) 4–31 (Cambridge Univ. Press, 1997).

  2. Clements, A. N. The Biology of Mosquitoes. Volume 2: Sensory, Reception and Behaviour (CABI Publishing, 1999).

  3. Downes, J. A. The swarming and mating flight of Diptera. Annu. Rev. Entomol. 14, 271–298 (1969).

    Article  Google Scholar 

  4. Gibson, N. H. E. On the mating swarms of certain Chironomidae (Diptera). Trans. R. Entomol. Soc. Lond. 95, 263–294 (1945).

    Article  Google Scholar 

  5. Sivinski, J. M. & Petersson, E. in The Evolution of Mating Systems in Insects and Arachnids (eds. Choe, J. A. & Crespi, J. B.) 294–309 (Cambridge Univ. Press, 1997).

  6. Shelly, T. E. & Whittier, T. S. in The Evolution of Mating Systems in Insects and Arachnids (eds. Choe, J. A. & Crespi, J. B.) 273–293 (Cambridge Univ. Press, 1997).

  7. Savolainen, E. Swarming in Ephemeroptera: the mechanism of swarming and the effects of illumination and weather. Ann. Zool. Fennici 15, 17–52 (1978).

    Google Scholar 

  8. Howell, P. I. & Knols, B. G. J. J. Male mating biology. Malar. J. 8, S8 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Charlwood, J. D. & Jones, M. D. R. Mating in the mosquito, Anopheles gambiae s.l. II. Swarming behaviour. Physiol. Entomol. 5, 315–320 (1980).

    Article  Google Scholar 

  10. Marchand, R. P. Field observations on swarming and mating in Anopheles gambiae mosquitoes in Tanzania. Neth. J. Zool. 34, 367–387 (1984).

    Article  Google Scholar 

  11. Charlwood, J. D. et al. The swarming and mating behaviour of Anopheles gambiae s.s. (Diptera: Culicidae) from São Tomé Island. J. Vector Ecol. 27, 178–183 (2002).

    CAS  PubMed  Google Scholar 

  12. Diabaté, A. et al. Natural swarming behaviour of the molecular M form of Anopheles gambiae. Trans. R. Soc. Trop. Med. Hyg. 97, 713–716 (2003).

    Article  PubMed  Google Scholar 

  13. Diabaté, A. et al. Spatial swarm segregation and reproductive isolation between the molecular forms of Anopheles gambiae. Proc. R. Soc. B Biol. Sci. 276, 4215–4222 (2009).

    Article  Google Scholar 

  14. Sawadogo, P. S. et al. Swarming behaviour in natural populations of Anopheles gambiae and An. coluzzii: review of 4 years survey in rural areas of sympatry, Burkina Faso (West Africa). Acta Trop. 130, 24–34 (2014).

    Google Scholar 

  15. della Torre, A. et al. Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Mol. Biol. 10, 9–18 (2001).

    Article  PubMed  Google Scholar 

  16. della Torre, A., Tu, Z. & Petrarca, V. On the distribution and genetic differentiation of Anopheles gambiae s.s. molecular forms. Insect Biochem. Mol. Biol. 35, 755–769 (2005).

    Article  PubMed  Google Scholar 

  17. Tripet, F. et al. DNA analysis of transferred sperm reveals significant levels of gene flow between molecular forms of Anopheles gambiae. Mol. Ecol. 10, 1725–1732 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Diabaté, A. et al. Mixed swarms of the molecular M and S forms of Anopheles gambiae (Diptera: Culicidae) in sympatric area from Burkina Faso. J. Med. Entomol. 43, 480–483 (2006).

    Article  PubMed  Google Scholar 

  19. Costantini, C. et al. Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecol. 9, 16 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sawadogo, P. S. et al. Differences in timing of mating swarms in sympatric populations of Anopheles coluzzii and Anopheles gambiae s.s. (formerly An. gambiae M and S molecular forms) in Burkina Faso, West Africa. Parasit. Vectors 6, 275 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Persiani, A., Dideco, M. A. & Petrangeli, G. Osservzioni di laboratorio su polimorfismi da inversione originati da incroci tra popolazioni diverse di Anopheles gambiae s.s. Ann. Dell’Istituto Super. Di Sanita 22, 221–224 (1986).

    CAS  Google Scholar 

  22. Diabaté, A. et al. Larval development of the molecular forms of Anopheles gambiae (Diptera: Culicidae) in different habitats: a transplantation experiment. J. Med. Entomol. 42, 548–553 (2005).

    Article  PubMed  Google Scholar 

  23. Diabaté, A., Dabiré, K. R., Millogo, N. & Lehmann, T. Evaluating the effect of postmating isolation between molecular forms of Anopheles gambiae (Diptera: Culicidae). J. Med. Entomol. 44, 60–64 (2007).

    Article  PubMed  Google Scholar 

  24. Hahn, M. W., White, B. J., Muir, C. D. & Besansky, N. J. No evidence for biased co-transmission of speciation Islands in Anopheles gambiae. Philos. Trans. R. Soc. B Biol. Sci. 367, 374–384 (2012).

    Article  Google Scholar 

  25. Pombi, M. et al. Dissecting functional components of reproductive isolation among closely related sympatric species of the Anopheles gambiae complex. Evol. Appl. 00, 1–19 (2017).

    Google Scholar 

  26. Lehmann, T. & Diabaté, A. The molecular forms of Anopheles gambiae: a phenotypic perspective. Infect. Genet. Evol. 8, 737–746 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Clements, A. N. The Biology of Mosquitoes: Development, Nutrition and Reproduction (Chapman & Hall, 1992).

  28. Gibson, G., Warren, B. & Russell, I. J. Humming in tune: sex and species recognition by mosquitoes on the wing. J. Assoc. Res. Otolaryngol. 11, 527–540 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pennetier, C., Warren, B., Dabiré, K. R., Russell, I. J. & Gibson, G. ‘Singing on the wing’ as a mechanism for species recognition in the malarial mosquito Anopheles gambiae. Curr. Biol. 20, 131–136 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Feugère, L., Gibson, G., Manoukis, N. C. & Roux, O. Mosquito sound communication: are male swarms loud enough to attract females? J. R. Soc. Interface 18, 20210121 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Poda, S. B. et al. Sex aggregation and species segregation cues in swarming mosquitoes: role of ground visual markers. Parasit. Vectors 12, 589 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang, G. et al. Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating. Science 371, 411–415 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Dao, A. et al. Assessment of alternative mating strategies in Anopheles gambiae: does mating occur indoors? J. Med. Entomol. 45, 643–652 (2008).

    PubMed  Google Scholar 

  34. Gomulski, L. Aspects of Mosquito Mating Behaviour. PhD thesis, Univ. London (1988).

  35. Kelly, D. W. & Dye, C. Pheromones, kairomones and the aggregation dynamics of the sandfly Lutzomyia longipalpis. Anim. Behav. 53, 721–731 (1997).

    Article  Google Scholar 

  36. Bray, D. P., Alves, G. B., Dorval, M. E., Brazil, R. P. & Hamilton, J. G. C. Synthetic sex pheromone attracts the leishmaniasis vector Lutzomyia longipalpis to experimental chicken sheds treated with insecticide. Parasit. Vectors 3, 16 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Diabaté, A. et al. Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evol. Biol. 11, 184 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Levi-Zada, A. et al. Diel periodicity of pheromone release by females of Planococcus citri and Planococcus ficus and the temporal flight activity of their conspecific males. Naturwissenschaften 101, 671–678 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Bjostad, L. B., Gaston, L. K. & Shorey, H. H. Temporal pattern of sex pheromone release by female Trichoplusia ni. J. Insect Physiol. 26, 493–498 (1980).

    Article  Google Scholar 

  40. Merlin, C. et al. An antennal circadian clock and circadian rhythms in peripheral pheromone reception in the moth Spodoptera littoralis. J. Biol. Rhythms 22, 502–514 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Rund, S. S. C. et al. Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae. Sci. Rep. 3, 2494 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Robledo, N. & Arzuffi, R. Influence of host fruit and conspecifics on the release of the sex pheromone by Toxotrypana curvicauda males (Diptera: Tephritidae). Environ. Entomol. 41, 387–391 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Andersson, J. et al. Male sex pheromone release and female mate choice in a butterfly. J. Exp. Biol. 210, 964–970 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Mozūraitis, R. et al. Male swarming aggregation pheromones increase female attraction and mating success among multiple African malaria vector mosquito species. Nat. Ecol. Evol. 4, 1395–1401 (2020).

    Article  PubMed  Google Scholar 

  45. Poda, S. B. et al. No evidence for long-range male sex pheromones in two malaria mosquitoes. Preprint at bioRxiv https://doi.org/10.1101/2020.07.05.187542 (2021).

  46. Verhulst, N. O. et al. Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria. PLoS ONE 5, e15829 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pandey, S. K. & Kim, K. Human body-odor components and their determination. Trends Anal. Chem. 30, 784–796 (2011).

    Article  CAS  Google Scholar 

  48. Dormont, L., Bessiere, J. M., McKey, D. & Cohuet, A. New methods for field collection of human skin volatiles and perspectives for their application in the chemical ecology of human-pathogen-vector interactions. J. Exp. Biol. 216, 2783–2788 (2013).

    CAS  PubMed  Google Scholar 

  49. Dormont, L., Bessière, J. M. & Cohuet, A. Human skin volatiles: a review. J. Chem. Ecol. 39, 569–578 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Tchouassi, D. P. et al. Common host-derived chemicals increase catches of disease-transmitting mosquitoes and can improve early warning systems for rift valley fever virus. PLoS Negl. Trop. Dis. 7, e2007 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  51. McBride, C. S. et al. Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515, 222–227 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Poli, D. et al. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME-GC/MS. J. Chromatogr. B. 878, 2643–2651 (2010).

    Article  CAS  Google Scholar 

  53. Filipiak, W. et al. Comparative analyses of volatile organic compounds (VOCs) from patients, tumors and transformed cell lines for the validation of lung cancer-derived breath markers. J. Breath. Res. 8, 027111 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Calenic, B. & Amann, A. Detection of volatile malodorous compounds in breath: current analytical techniques and implications in human disease. Bioanalysis 6, 357–376 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Cainap, C., Pop, L. A., Balacescu, O. & Cainap, S. S. Early diagnosis and screening in lung cancer. Am. J. Cancer Res. 10, 1993–2009 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dekel, A., Yakir, E. & Bohbot, J. D. The sulcatone receptor of the strict nectar-feeding mosquito Toxorhynchites amboinensis. Insect Biochem. Mol. Biol. 111, 103174 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Nyasembe, V. O. et al. Development and assessment of plant-based synthetic odor baits for surveillance and control of malaria vectors. PLoS Negl. Trop. Dis. 9, e89818 (2014).

    Google Scholar 

  58. Wondwosen, B. et al. Sweet attraction: sugarcane pollen-associated volatiles attract gravid Anopheles arabiensis. Malar. J. 17, 90 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wondwosen, B. et al. Rice volatiles lure gravid malaria mosquitoes, Anopheles arabiensis. Sci. Rep. 6, 37930 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Suh, E., Choe, D., Saveer, A. M. & Zwiebel, L. J. Suboptimal larval habitats modulate oviposition of the malaria vector mosquito Anopheles coluzzii. PLoS ONE 11, e0149800 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kostiainen, R. Volatile organic compounds in the indoor air of normal and sick houses. Atmos. Environ. 29, 693–702 (1995).

    Article  CAS  Google Scholar 

  62. Kruza, M., Lewis, A. C., Morrison, C. G. & Carslaw, N. Impact of surface ozone interactions on indoor air chemistry: a modeling study. Indoor Air 27, 1001–1011 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Tripet, F., Dolo, G., Traoré, S. & Lanzaro, G. C. The ‘wingbeat hypothesis’ of reproductive isolation between members of the Anopheles gambiae complex (Diptera: Culicidae) does not fly. J. Med. Entomol. 41, 375–384 (2004).

    Article  PubMed  Google Scholar 

  64. Facchinelli, L. et al. Stimulating Anopheles gambiae swarms in the laboratory: application for behavioural and fitness studies. Malar. J. 14, 271 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Niang, A. et al. Semi-field and indoor setups to study malaria mosquito swarming behavior. Parasit. Vectors 12, 446 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gibson, G. Swarming behaviour of the mosquito Culex pipiens quinquefasciatus: a quantitative analysis. Physiol. Entomol. 10, 283–296 (1985).

    Article  Google Scholar 

  67. Bimbilé Somda, N. S. et al. Ecology of reproduction of Anopheles arabiensis in an urban area of Bobo-Dioulasso, Burkina Faso (West Africa): monthly swarming and mating frequency and their relation to environmental factors. PLoS ONE 13, e0205966 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Maïga, H., Dabiré, R. K., Lehmann, T., Tripet, F. & Diabaté, A. Variation in energy reserves and role of body size in the mating system of Anopheles gambiae. J. Vector Ecol. 37, 289–297 (2012).

    Article  PubMed  Google Scholar 

  69. Maïga, H. et al. Role of nutritional reserves and body size in Anopheles gambiae males mating success. Acta Trop. 132S, S102–S107 (2014).

    Article  Google Scholar 

  70. Schiestl, F. P. The evolution of floral scent and insect chemical communication. Ecol. Lett. 13, 643–656 (2010).

    Article  PubMed  Google Scholar 

  71. Goodrich, K. R., Zjhra, M. L., Ley, C. A. & Raguso, R. A. When flowers smell fermented: the chemistry and ontogeny of yeasty floral scent in Pawpaw (Asimina triloba: Annonaceae). Int. J. Plant Sci. 167, 33–46 (2006).

    Article  CAS  Google Scholar 

  72. Iatrou, K. & Biessmann, H. Sex-biased expression of odorant receptors in antennae and palps of the African malaria vector Anopheles gambiae. Insect Biochem. Mol. Biol. 38, 268–274 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Pitts, R. J., Rinker, D. C., Jones, P. L., Rokas, A. & Zwiebel, L. J. Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding. BMC Genomics 12, 271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lu, T. et al. Odor coding in the maxillary palp of the malaria vector mosquito Anopheles gambiae. Curr. Biol. 17, 1533–1544 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Guidobaldi, F., May-Concha, I. J. & Guerenstein, P. G. Morphology and physiology of the olfactory system of blood-feeding insects. J. Physiol. Paris 108, 96–111 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Mosqueira, B. et al. Pilot study on the combination of an organophosphate-based insecticide paint and pyrethroid-treated long lasting nets against pyrethroid resistant malaria vectors in Burkina Faso. Acta Trop. 148, 162–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Poda, S. B. et al. Targeted application of an organophosphate-based paint applied on windows and doors against Anopheles coluzzii resistant to pyrethroids under real life conditions in Vallée du Kou, Burkina Faso (West Africa). Malar. J. 17, 136 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Diabaté, A. et al. The spread of the Leu-Phe kdr mutation through Anopheles gambiae complex in Burkina Faso: genetic introgression and de novo phenomena. Trop. Med. Int. Heal. 9, 1267–1273 (2004).

    Article  Google Scholar 

  79. Santolamazza, F. et al. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar. J. 7, 163 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lefèvre, T. et al. Evolutionary lability of odour-mediated host preference by the malaria vector Anopheles gambiae. Trop. Med. Int. Heal. 14, 228–236 (2009).

    Article  Google Scholar 

  81. Lefèvre, T. et al. Beer consumption increases human attractiveness to malaria mosquitoes. PLoS ONE 5, e9546 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Vantaux, A. et al. Host-seeking behaviors of mosquitoes experimentally infected with sympatric field isolates of the human malaria parasite Plasmodium falciparum: no evidence for host manipulation. Front. Ecol. Evol. 3, 86 (2015).

    Article  Google Scholar 

  83. Nguyen, P. L. et al. No evidence for manipulation of Anopheles gambiae, An. coluzzii and An. arabiensis host preference by Plasmodium falciparum. Sci. Rep. 7, 9415 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Tienpont, B., David, F., Bicchi, C. & Sandra, P. High capacity headspace sorptive extraction. J. Microcolumn Sep. 12, 577–584 (2000).

    Article  CAS  Google Scholar 

  85. Bicchi, C., Cordero, C., Iori, C., Rubiolo, P. & Sandra, P. Headspace Sorptive Extraction (HSSE) in the headspace analysis of aromatic and medicinal plants. J. High. Resolut. Chromatogr. 23, 539–546 (2000).

    Article  CAS  Google Scholar 

  86. Souto-Vilarós, D. et al. Pollination along an elevational gradient mediated both by floral scent and pollinator compatibility in the fig and fig-wasp mutualism. J. Ecol. 106, 2256–2273 (2018).

    Article  Google Scholar 

  87. Zellner, Bd’Acampora et al. Linear retention indices in gas chromatographic analysis: a review. Flavour Fragr. J. 23, 297–314 (2008).

    Article  Google Scholar 

  88. Charpentier, M. J. E., Barthes, N., Proffit, M., Bessière, J. M. & Grison, C. Critical thinking in the chemical ecology of mammalian communication: roadmap for future studies. Funct. Ecol. 26, 769–774 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Sanou for his assistance in the field, S. Somda, S. Somé, B. Scheid, M. Rossignol and C. Ginibre for their help in mosquito rearing and H. Lançon for proofreading the paper. This work was funded by a grant from the Agence Nationale de la Recherche (grant no. ANR-15-CE35-0001-01) awarded to O.R. S.B.P. received financial support through a doctoral fellowship from the IRD.

Author information

Authors and Affiliations

Authors

Contributions

O.R. conceived the study. O.R., S.B.P., B.B., B.L. and L.D. designed the chemical and electrophysiological experiments. O.R. and S.B.P. performed chemical extractions. S.B.P. and B.B. performed the chemical analysis. S.B.P. and B.L. performed the electrophysiological experiments. O.R. and S.B.P. designed olfactometric experiments and S.B.P. performed data collection. S.B.P. and O.R. performed statistical analyses. S.B.P., O.R., B.B. and B.L. drafted the manuscript and L.D., O.G., A.D. and R.K.D critically revised the manuscript. All authors revised the manuscript, gave final approval for publication and are accountable for the work performed therein.

Corresponding author

Correspondence to Olivier Roux.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Willem Takken, Marcelo Lorenzo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Table 1, Figs. 1–4 and Results.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poda, S.B., Buatois, B., Lapeyre, B. et al. No evidence for long-range male sex pheromones in two malaria mosquitoes. Nat Ecol Evol 6, 1676–1686 (2022). https://doi.org/10.1038/s41559-022-01869-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01869-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing