Skip to main content
Log in

New thyristor-based hybrid DC circuit breaker with reverse injection of resonant current

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

This paper proposes a thyristor-based hybrid DC circuit breaker (HDCCB), which is composed of a fast mechanical circuit breaker and an LC resonant circuit with thyristor switches. The proposed HDCCB provides a zero-crossing point for fault current by injecting a resonant current in the reverse direction of the fault current. The proposed HDCCB has a low conduction loss in normal operation using a mechanical circuit breaker, and it offers the advantages of low cost, high reliability, and large capacity using thyristor switches instead of IGBT switches. It also has the design flexibility to adjust the magnitude of the injection current depending on the fault current level. A bidirectional HDCCB is also proposed by adding several components to the developed unidirectional HDCCB, which can offer compact system size and low system cost. Design considerations of the proposed structure are discussed. The validity of the proposed HDCCB is verified by simulation and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wen, W., Li, B., Li, B., Liu, H., He, J., Ma, J., Li, Y.: Analysis and experiment of a micro-loss multi-port hybrid DCCB for MVDC distribution system. IEEE Trans. Power Electron. 34(8), 7933–7941 (2019)

    Article  Google Scholar 

  2. Peng, C., Song, X., Huang, A.Q., Husain, I.: A medium-voltage hybrid DC circuit breaker–Part II: ultrafast mechanical switch. IEEE J. Emerg. Sel Topics Power Electron. 5(1), 289–296 (2017)

    Article  Google Scholar 

  3. Shi, Y., Li, H.: Isolated modular multilevel DC-DC converter with DC fault current control capability based on current-fed dual active bridge for MVDC application. IEEE Trans. Power Electron. 33(3), 2145–2161 (2018)

    Article  MathSciNet  Google Scholar 

  4. Ali, M.A., Barakat, M.M., Abokhalaf, M.M., Fadel, Y.H., Kandil, M., Rasmy, M.W., Ali, O.N., Besheer, A.H., Emara, H.M., Bahgat, A.: Micro-grid monitoring and supervision: web-based SCADA approach. J. Electr. Eng. Technol. 16(5), 2313–2331 (2021)

    Article  Google Scholar 

  5. Huai, Q., Qin, L., Liu, K., Xu, Y., Wang, F., Ding, H.: Improved hausdorff distance based pilot protection for multi-terminal HVDC system. J. Electr. Eng. Technol. 16(4), 1955–1969 (2021)

    Article  Google Scholar 

  6. Wang, W., Barnes, M., Marjanovic, O., Cwikowski, O.: Impact of DC breaker systems on multi-terminal VSC-HVDC stability. IEEE Trans. Power Del. 31(2), 769–779 (2016)

    Article  Google Scholar 

  7. Park, S.-Y., Choi, H.-S.: Characteristics of arc-induction type DC circuit breaker depending on alteration of induction needle. J. Electr. Eng. Technol. 15(1), 279–285 (2020)

    Article  Google Scholar 

  8. Lee, J.-H., Park, M.-S., Ahn, H.-S., Park, K.-W., Oh, J.-S., Jeon, S.-G., Kim, D.-K., Kim, J.-E.: Method for protection of single-line-ground fault of distribution system with DG using distance relay and directional delay. J. Electr. Eng. Technol. 15(4), 1607–1616 (2020)

    Article  Google Scholar 

  9. Park, S.-Y., Choi, H.-S.: Analysis of operating characteristics of a superconducting arc-induction type DC circuit breaker using the Maxwell program. J. Electr. Eng. Technol. 16(2), 861–866 (2021)

    Article  Google Scholar 

  10. Xing, L., Zhang, X., Tong, Q., Xing, G.: Study of ablation of arc contacts and dynamic contact resistance in high current breaker. J. Electr. Eng. Technol. 15(3), 1015–1023 (2020)

    Article  Google Scholar 

  11. Keshavarzi, D., Farjah, E., Ghanbari, T.: Hybrid DC circuit breaker and fault current limiter with optional interruption capability. IEEE Trans. Power Electron. 33(3), 2330–2338 (2018)

    Article  Google Scholar 

  12. Choi, H.-W., Park, S.-Y., Choi, H.-S.: Characteristics of a current-limiting DC circuit breaker with a superconducting coil applied to the commutation circuit. J. Electr. Eng. Technol. 15(4), 1921–1926 (2020)

    Article  Google Scholar 

  13. Shukla, A., Demetriades, G.D.: A survey on hybrid circuit-breaker topologies. IEEE Trans. Power Del. 30(2), 627–641 (2015)

    Article  Google Scholar 

  14. Guo, Y., Wang, G., Zeng, D., Li, H., Chao, H.: A thyristor full-bridge-based DC circuit breaker. IEEE Trans. Power Electron. 35(1), 1111–1123 (2020)

    Article  Google Scholar 

  15. Callavik, M., Blomberg, A., Hafner, J., Jacobson, B.: The hybrid HVDC breaker: An innovation breakthrough enabling reliable HVDC grids. ABB Grid Syst. Tech. Paper 361, 143 (2012)

    Google Scholar 

  16. Suliman, M.Y., Ghazal, M.: Design and implementation of overcurrent protection relay. J. Electr. Eng. Technol. 15(4), 1595–1605 (2020)

    Article  Google Scholar 

  17. Keshavarzi, D., Farjah, E., Ghanbari, T.: Hybrid DC circuit breaker and fault current limiter with optional interruption capability. IEEE Trans. Power Del. 33(3), 2330–2338 (2018)

    Article  Google Scholar 

  18. Peng, C., Husain, I., Huang, A., Lequesne, B., Briggs, R.: A fast mechanical switch for medium-voltage hybrid DC and AC circuit breakers. IEEE Trans. Ind. Appl. 52(4), 2911–2918 (2016)

    Article  Google Scholar 

  19. Jiang, W., Liu, X., Chen, H., Li, P., Zhang, Y.: Topology, modeling and transient current transfer analysis of DC hybrid vacuum circuit breaker based on SiC module. J. Electr. Eng. Technol. 16(5), 2809–2816 (2021)

    Article  Google Scholar 

  20. Abramovitx, A., Ma Smedley, K.: Survey of solid-state fault current limiters. IEEE Trans. Power Electron. 27(6), 2770–2782 (2012)

    Article  Google Scholar 

  21. Wu, B.: High-power converters and AC drives. Wiley, Hoboken (2007)

    Google Scholar 

  22. Lazzari, R., Piegari, L.: Design and implementation of LVDC hybrid circuit breaker. IEEE Trans. Power Electron. 34(8), 7369–7380 (2019)

    Article  Google Scholar 

  23. Yu, J.-Y., Kim, J.-Y., Song, S.-M., Ayubu, Z., Kim, I.-D.: New DC solid-state circuit breaker with natural charging operation. IEEE Trans. Ind. Electron. 68(11), 10360–10368 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Korea Electric Power Corporation. (Grant Number: R21XO01-11). This research was supported by Technology Development Program to Solve Climate Changes through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (2021M1A2A2065441)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyo-Beum Lee.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, JY., Lee, EJ., Han, B. et al. New thyristor-based hybrid DC circuit breaker with reverse injection of resonant current. J. Power Electron. 22, 1836–1847 (2022). https://doi.org/10.1007/s43236-022-00511-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-022-00511-0

Keywords

Navigation