Skip to main content

Advertisement

Log in

Bioenergetic and vascular predictors of potential super-ager and cognitive decline trajectories—a UK Biobank Random Forest classification study

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Aging has often been characterized by progressive cognitive decline in memory and especially executive function. Yet some adults, aged 80 years or older, are “super-agers” that exhibit cognitive performance like younger adults. It is unknown if there are adults in mid-life with similar superior cognitive performance (“positive-aging”) versus cognitive decline over time and if there are blood biomarkers that can distinguish between these groups. Among 1303 participants in UK Biobank, latent growth curve models classified participants into different cognitive groups based on longitudinal fluid intelligence (FI) scores over 7–9 years. Random Forest (RF) classification was then used to predict cognitive trajectory types using longitudinal predictors including demographic, vascular, bioenergetic, and immune factors. Feature ranking importance and performance metrics of the model were reported. Despite model complexity, we achieved a precision of 77% when determining who would be in the “positive-aging” group (n = 563) vs. cognitive decline group (n = 380). Among the top fifteen features, an equal number were related to either vascular health or cellular bioenergetics but not demographics like age, sex, or socioeconomic status. Sensitivity analyses showed worse model results when combining a cognitive maintainer group (n = 360) with the positive-aging or cognitive decline group. Our results suggest that optimal cognitive aging may not be related to age per se but biological factors that may be amenable to lifestyle or pharmacological changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dempster FN. The rise and fall of the inhibitory mechanism: Toward a unified theory of cognitive development and aging. Dev Rev. 1992;1;12(1):45–75. https://doi.org/10.1016/0273-2297(92)90003-K.

  2. Parkin AJ, Walter BM. Recollective experience, normal aging, and frontal dysfunction. Psychol Aging. 1992;7(2):290. https://doi.org/10.1037/0882-7974.7.2.290.

  3. Salthouse TA. When does age-related cognitive decline begin? Neurobiol Aging. 2009;30(4):507–14. https://doi.org/10.1016/j.neurobiolaging.2008.09.023 (Elsevier Inc).

    Article  Google Scholar 

  4. Singh-Manoux A, Kivimaki M, Glymour MM, Elbaz A, Berr C, Ebmeier KP, Ferrie JE, Dugravot A. Timing of onset of cognitive decline: results from Whitehall II prospective cohort study. BMJ. 2012;344. https://doi.org/10.1136/bmj.d7622.

  5. Jensen, Arthur R. Abilities: their structure, growth, and action. Am J Psychol. 1974;290–6. https://doi.org/10.2307/1422024.

  6. Cornelis MC, Wang Y, Holland T, Agarwal P, Weintraub S, Morris MC. Age and cognitive decline in the UK Biobank. PloS One. 2019;14(3):e0213948. https://doi.org/10.1371/journal.pone.0213948.

  7. Kievit RA, Davis SW, Mitchell DJ, Taylor JR, Duncan J, Henson RN. Distinct aspects of frontal lobe structure mediate age-related differences in fluid intelligence and multitasking. Nat Commun. 2014;5(1):5658. https://doi.org/10.1038/ncomms6658.

  8. Lyall DM, Cullen B, Allerhand M, Smith DJ, Mackay D, Evans J, Anderson J, Fawns-Ritchie C, McIntosh AM, Deary IJ, Pell JP. Cognitive test scores in UK Biobank: data reduction in 480,416 participants and longitudinal stability in 20,346 participants. PloS One. 2016;11(4):e0154222. https://doi.org/10.1371/journal.pone.0154222.

  9. Schretlen D, et al. Elucidating the contributions of processing speed, executive ability, and frontal lobe volume to normal age-related differences in fluid intelligence. J Int Neuropsychol Soc. 2000;6(1):52–61. https://doi.org/10.1017/S1355617700611062.

    Article  CAS  Google Scholar 

  10. Harrison TM, Weintraub S, Mesulam MM, Rogalski E. Superior memory and higher cortical volumes in unusually successful cognitive aging. J Int Neuropsychol Soc. 2012;18(6):1081–5. https://doi.org/10.1017/S1355617712000847.

    Article  Google Scholar 

  11. Harrison TM, Maass A, Baker SL, Jagust WJ. Brain morphology, cognition, and β-amyloid in older adults with superior memory performance. Neurobiol Aging. 2018;67:162–70. https://doi.org/10.1016/j.neurobiolaging.2018.03.024.

    Article  CAS  Google Scholar 

  12. Zhang J, Andreano JM, Dickerson BC, Touroutoglou A, Barrett LF. Stronger functional connectivity in the default mode and salience networks is associated with youthful memory in superaging. Cereb Cortex. 2020;30(1):72–84. https://doi.org/10.1093/cercor/bhz071.

    Article  Google Scholar 

  13. Rowe JW, Kahn RL. Human aging: usual and successful. Science. 1987;237(4811):143–9. https://doi.org/10.1126/science.3299702.

  14. Rogalski EJ, Gefen T, Shi J, Samimi M, Bigio E, Weintraub S, Geula C, Mesulam MM. Youthful memory capacity in old brains: anatomic and genetic clues from the Northwestern SuperAging Project. J Cogn Neurosci. 2013;25(1):29–36. https://doi.org/10.1162/jocn_a_00300.

  15. Winchester LM, Powell J, Lovestone S, Nevado-Holgado AJ. Red blood cell indices and anaemia as causative factors for cognitive function deficits and for Alzheimer’s disease. Genome Med. 2018;10(1):1–2. https://doi.org/10.1186/s13073-018-0556-z.

  16. Tao Wang R, Jin D, Li Y, Cheng Liang Q. Decreased mean platelet volume and platelet distribution width are associated with mild cognitive impairment and Alzheimer’s disease. J Psychiatric Res. 2013;47(5):644–9. https://doi.org/10.1016/j.jpsychires.2013.01.014.

    Article  Google Scholar 

  17. Sun D, Wang Q, Kang J, Zhou J, Qian R, Wang W, Wang H, Zhang Q. Correlation between serum platelet count and cognitive function in patients with atrial fibrillation: a cross-sectional study. Cardiol Res Pract. 2021;2021. https://doi.org/10.1155/2021/9039610.

  18. Horgusluoglu E, Neff R, Song WM, Wang M, Wang Q, Arnold M, Krumsiek J, Galindo‐Prieto B, Ming C, Nho K, Kastenmüller G. Integrative metabolomics‐genomics approach reveals key metabolic pathways and regulators of Alzheimer’s disease. Alzheimer’s & Dementia. 2022;18(6):1260–78. https://doi.org/10.1002/alz.12468.

  19. Clark AL, Weigand AJ, Bangen KJ, Thomas KR, Eglit GM, Bondi MW, Delano‐Wood L, Alzheimer's Disease Neuroimaging Initiative. Higher cerebrospinal fluid tau is associated with history of traumatic brain injury and reduced processing speed in Vietnam‐era veterans: A Department of Defense Alzheime’s Disease Neuroimaging Initiative (DOD‐ADNI) study. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring. 2021;13(1):e12239. https://doi.org/10.1002/dad2.12239.

  20. Zhang S, Liu YQ, Jia C, Lim YJ, Feng G, Xu E, Long H, Kimura Y, Tao Y, Zhao C, Wang C. Mechanistic basis for receptor-mediated pathological α-synuclein fibril cell-to-cell transmission in Parkinson’s disease. Proceedings of the National Academy of Sciences. 2021;118(26):e2011196118. https://doi.org/10.1073/pnas.2011196118.

  21. Du Y, et al. Plasma metabolites were associated with spatial working memory in major depressive disorder. Med. 2021;100(8):e24581. https://doi.org/10.1097/MD.0000000000024581.

    Article  CAS  Google Scholar 

  22. Ooi TC, et al. Intermittent fasting enhanced the cognitive function in older adults with mild cognitive impairment by inducing biochemical and metabolic changes: a 3-year progressive study. Nutrients. 2020;12(9):1–20. https://doi.org/10.3390/nu12092644.

    Article  CAS  Google Scholar 

  23. Hearps AC, et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell. 2012;11(5):867–75. https://doi.org/10.1111/j.1474-9726.2012.00851.x.

    Article  CAS  Google Scholar 

  24. Kao TW, Chang YW, Chou CC, Hu J, Yu YH, Kuo HK. White blood cell count and psychomotor cognitive performance in the elderly. Eur J Clin Invest. 2011;41(5):513–20. https://doi.org/10.1111/j.1365-2362.2010.02438.x.

    Article  Google Scholar 

  25. Serre-Miranda C, Roque S, Santos NC, Portugal-Nunes C, Costa P, Palha JA, Sousa N, Correia-Neves M. Effector memory CD4+ T cells are associated with cognitive performance in a senior population. Neurology-Neuroimmunology Neuroinflammation. 2015;2(1). https://doi.org/10.1212/NXI.0000000000000054.

  26. Wang GY, et al. Associations between immunological function and memory recall in healthy adults. Brain Cogn. 2017;119:39–44. https://doi.org/10.1016/j.bandc.2017.10.002.

    Article  Google Scholar 

  27. Klinedinst BS, et al. Aging-related changes in fluid intelligence, muscle and adipose mass, and sex-specific immunologic mediation: a longitudinal UK Biobank study. Brain Behav Immun. 2019;82:396–405. https://doi.org/10.1016/j.bbi.2019.09.008.

    Article  Google Scholar 

  28. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, Liu B. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779. https://doi.org/10.1371/journal.pmed.1001779.

  29. Armstrong J, et al. Dynamic linkage of covid-19 test results between public health England’s second generation surveillance system and UK biobank. Microbial Genomics. 2020;6(7):1–9. https://doi.org/10.1099/mgen.0.000397.

    Article  CAS  Google Scholar 

  30. Hilton B, Wilson D, O’Connell AM, Ironmonger D, Rudkin JK, Allen N, Oliver I, Wyllie D. Incidence of microbial infections in English UK Biobank participants: Comparison with the general population. medRxiv. 2020. https://doi.org/10.1101/2020.03.18.20038281.

  31. Würtz P, Kangas AJ, Soininen P, Lawlor DA, Davey Smith G, Ala-Korpela M. Quantitative serum nuclear magnetic resonance metabolomics in large-scale epidemiology: a primer on -omic technologies. Am J Epidemiol. 2017;186(9):1084–96. https://doi.org/10.1093/aje/kwx016.

    Article  Google Scholar 

  32. Soininen P, et al. High-throughput serum NMR metabonomics for cost-effective holistic studies on systemic metabolism. Analyst. 2009;134(9):1781–5. https://doi.org/10.1039/b910205a.

    Article  CAS  Google Scholar 

  33. Kotsiantis SB, Zaharakis ID, Pintelas PE. Machine learning: a review of classification and combining techniques. Artif Intell Rev. 2006;26(3):159–90. https://doi.org/10.1007/s10462-007-9052-3.

    Article  Google Scholar 

  34. Liu Y, Wang Y, Zhang J. New Machine Learning Algorithm: Random Forest. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2012;7473(LNCS):246–52. https://doi.org/10.1007/978-3-642-34062-8_32.

    Article  Google Scholar 

  35. Loh WY. Classification and regression trees. Wiley Interdiscip Rev: Data Mining Knowl Discov. 2011;1(1):14–23. https://doi.org/10.1002/widm.8.

    Article  Google Scholar 

  36. Liu M, Wang M, Wang J, Li D. Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: application to the recognition of orange beverage and Chinese vinegar. Sens Actuators, B Chem. 2013;177:970–80. https://doi.org/10.1016/j.snb.2012.11.071.

    Article  CAS  Google Scholar 

  37. Mqadi NM, Naicker N, Adeliyi T. Solving misclassification of the credit card imbalance problem using near miss. Math Probl Eng. 2021;2021. https://doi.org/10.1155/2021/7194728.

  38. Singhal R, Rana R. Chi-square test and its application in hypothesis testing. J Prac Card Sci. 2015;1(1):69. https://doi.org/10.4103/2395-5414.157577.

    Article  Google Scholar 

  39. Van Rossum G, Drake FL. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace; 2009.

  40. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria; 2016. https://www.R-project.org/.

  41. Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer disease: the Nun Study. Jama. 1997;277(10):813–7. https://doi.org/10.1001/jama.1997.03540340047031.

  42. Cipollini V, Troili F, Giubilei F. Emerging biomarkers in vascular cognitive impairment and dementia: from pathophysiological pathways to clinical application. Int J Mol Sci. 2019;20(11):2812. https://doi.org/10.3390/ijms20112812.

    Article  CAS  Google Scholar 

  43. Stellos K, Panagiota V, Kögel A, Leyhe T, Gawaz M, Laske C. Predictive value of platelet activation for the rate of cognitive decline in Alzheimer’s disease patients. J Cereb Blood Flow Metab. 2010;30(11):1817–20. https://doi.org/10.1038/jcbfm.2010.140.

    Article  CAS  Google Scholar 

  44. Krauss RM. Lipoprotein subfractions and cardiovascular disease risk. Curr Opin Lipidol. 2010;21(4):305–11. https://doi.org/10.1097/MOL.0b013e32833b7756.

    Article  CAS  Google Scholar 

  45. Rizzo M, Berneis K. Low-density lipoprotein size and cardiovascular risk assessment. QJM - Monthly J Assoc Phys. 2006;99(1):1–14. https://doi.org/10.1093/qjmed/hci154.

    Article  CAS  Google Scholar 

  46. Tribble DL, Van Den Berg JJ, Motchnik PA, Ames BN, Lewis DM, Chait A, Krauss RM. Oxidative susceptibility of low density lipoprotein subfractions is related to their ubiquinol-10 and alpha-tocopherol content. Proceedings of the National Academy of Sciences. 1994;91(3):1183–7. https://doi.org/10.1073/pnas.91.3.1183.

  47. Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proceedings of the National Academy of Sciences. 1984;81(12):3883–7. https://doi.org/10.1073/pnas.81.12.3883.

  48. Ohmura H, et al. Lipid compositional differences of small, dense low-density lipoprotein particle influence its oxidative susceptibility: possible implication of increased risk of coronary artery disease in subjects with phenotype B. Metab Clin Exp. 2002;51(9):1081–7. https://doi.org/10.1053/meta.2002.34695.

    Article  CAS  Google Scholar 

  49. Vlaardingerbroek H, et al. Essential polyunsaturated fatty acids in plasma and erythrocytes of children with inborn errors of amino acid metabolism. Mol Genet Metab. 2006;88(2):159–65. https://doi.org/10.1016/j.ymgme.2006.01.012.

    Article  CAS  Google Scholar 

  50. Lauritzen L, Brambilla P, Mazzocchi A, Harsløf LB, Ciappolino V, Agostoni C. DHA effects in brain development and function. Nutrients. 2016;8(1):6. https://doi.org/10.3390/nu8010006.

    Article  CAS  Google Scholar 

  51. Allen PW, Bowen HJ, Sutton LE, Bastiansen O. The molecular structure of acetone. Transactions of the Faraday Society. 1952;48:991–5.

    Article  CAS  Google Scholar 

  52. Balasse EO, Féry F. Ketone body production and disposal: effects of fasting, diabetes, and exercise. Diabetes/Metabolism Reviews. 1989;5(3):247–70. https://doi.org/10.1002/dmr.5610050304.

    Article  CAS  Google Scholar 

  53. McNally MA, Hartman AL. Ketone bodies in epilepsy. J Neurochem. 2012;121(1):28–35. https://doi.org/10.1111/j.1471-4159.2012.07670.x.

    Article  CAS  Google Scholar 

  54. Lefèvre A, Adler H, Lieber CS. Effect of ethanol on ketone metabolism. J Clin Investig. 1970;49(10):1775–82. https://doi.org/10.1172/JCI106395.

    Article  Google Scholar 

  55. Baraona E, Lieber CS. Effects of ethanol on lipid metabolism. J Lipid Res. 1979;20(3):289–315. https://doi.org/10.1016/s0022-2275(20)40613-3.

    Article  CAS  Google Scholar 

  56. Ruddick JA. Toxicology, metabolism, and biochemistry of 1, 2-propanediol. Toxicol Appl Pharmacol. 1972;21(1):102–11. https://doi.org/10.1016/0041-008X(72)90032-4.

    Article  CAS  Google Scholar 

  57. Garwin AW, Koltyn KF, Morgan WP. Influence of acute physical activity and relaxation on state anxiety and blood lactate in untrained college males. Int J Sports Med. 1997;28(06):470–6. https://doi.org/10.1055/s-2007-972666.

    Article  Google Scholar 

  58. Rasmussen P, Wyss MT, Lundby C. Cerebral glucose and lactate consumption during cerebral activation by physical activity in humans. FASEB J. 2011;25(9):2865–73. https://doi.org/10.1096/fj.11-183822.

    Article  CAS  Google Scholar 

  59. Mintun MA, Vlassenko AG, Rundle MM, Raichle ME. Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain. Proceedings of the National Academy of Sciences. 2004;101(2):659–64. https://doi.org/10.1073/pnas.0307457100.

Download references

Acknowledgements

This research was conducted using the UK Biobank Resource under Application Number 25057.

Funding

The study was funded by the Iowa State University, NIH R00 AG047282, and AARGD-17–529552. No funding provider had any role in the conception, collection, execution, or publication of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Auriel A. Willette.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadiarvejeh, P., Klinedinst, B.S., Wang, Q. et al. Bioenergetic and vascular predictors of potential super-ager and cognitive decline trajectories—a UK Biobank Random Forest classification study. GeroScience 45, 491–505 (2023). https://doi.org/10.1007/s11357-022-00657-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-022-00657-6

Keywords

Navigation