Skip to main content
Log in

Solution of Time-Fractional Rosenau-Hyman Model Using a Robust Homotopy Approach via Formable Transform

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

This work considers a robust homotopy analysis method with a formable transform that investigates a time-fractional Rosenau-Hyman model based on a KdV-like equation having compacton solutions. Here, a novel technique that combines the homotopy analysis method with formable transformation has been implemented, called \(\eta\)-homotopy analysis formable transformation technique (\(\eta\)-HAFTT) to obtain an approximate analytical solution of the time-fractional Rosenau-Hyman equation. Finally, the \(\eta\)-HAFTT solution is compared with the available solution numerically and graphically to check the efficacy of the obtained solution. It shows that the new suggested algorithm (\(\eta\)-HAFTT) provides the approximate solutions with the least approximations having better accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alomari AK (2020) Homotopy-Sumudu transforms for solving system of fractional partial differential equations. Adv Differ Equ 2020(1):1–16

    MathSciNet  MATH  Google Scholar 

  • Argyros IK (2008) Convergence and applications of Newton-type iterations. Springer

  • Arslan D (2020) The comparison study of hybrid method with RDTM for solving Rosenau-Hyman equation. Appl Math Nonlinear Sci 5(1):267–274

    MathSciNet  Google Scholar 

  • Baskonus HM (2019) Complex soliton solutions to the Gilson-Pickering model. Axioms 8(1):18

    MATH  Google Scholar 

  • Cinar M, Secer A, Bayram M (2021) An application of Genocchi wavelets for solving the fractional Rosenau-Hyman equation. Alex Eng J 60(6):5331–5340

    Google Scholar 

  • Clarkson PA, Mansfield EL, Priestley TJ (1997) Symmetries of a class of nonlinear third-order partial differential equations. Math. Comput. Model 25(8–9):195–212

    MathSciNet  MATH  Google Scholar 

  • Diethelm K, Ford NJ (2002) Analysis of fractional differential equations. J Math Anal Appl 265(2):229–248

    MathSciNet  MATH  Google Scholar 

  • Gilson C, Pickering A (1995) Factorization and Painlevé analysis of a class of nonlinear third-order partial differential equations. J. Phys. A Math. Gen. 28(10):2871

    MATH  Google Scholar 

  • Gupta S, Goyal M, Prakash A (2021) A hybrid computational scheme with convergence analysis for the dependent Rosenau-Hyman equation of arbitrary order via Caputo-Fabrizio operator. Int J Appl Comput Math 7(6):1–16

    MathSciNet  MATH  Google Scholar 

  • Haq A (2022) Partial-approximate controllability of semi-linear systems involving two Riemann-Liouville fractional derivatives. Chaos, Solitons Fractals 157:111923

    MathSciNet  Google Scholar 

  • Hashemi MS, Baleanu D (2020) Lie symmetry analysis of fractional differential equations. Chapman and Hall/CRC

    MATH  Google Scholar 

  • Hashemi MS, Haji-Badali A, Vafadar P (2014) Group invariant solutions and conservation laws of the Fornberg-Whitham equation. Zeitschrift Für Naturforschung A 69(8–9):489–496

    Google Scholar 

  • Hashemi MS, Inc M, Bayram M (2019) Symmetry properties and exact solutions of the time fractional Kolmogorov-Petrovskii-Piskunov equation. Rev Mex Fís 65(5):529–535

    MathSciNet  Google Scholar 

  • Hilfer R (2000) Applications of fractional calculus in physics. World scientific

    MATH  Google Scholar 

  • Ionescu C, Lopes A, Dana Copot JA, Machado T, Bates JHT (2017) The role of fractional calculus in modeling biological phenomena: a review. Commun Nonlinear Sci Numer Simul 51:141–159

    MathSciNet  MATH  Google Scholar 

  • Iqbal MA, Ye Wang Md, Miah M, Osman MS (2021) Study on date–jimbo–kashiwara–miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solutions. Fractal Fract 6(1):4

    Google Scholar 

  • Iyiola OS, Ojo GO, Mmaduabuchi O (2016) The fractional Rosenau-Hyman model and its approximate solution. Alex Eng J 55(2):1655–1659

    Google Scholar 

  • Jani HP, Singh TR (2022) Study of concentration arising in longitudinal dispersion phenomenon by Aboodh transform homotopy perturbation method. Int J Appl Comput Math 8(4):1–10

    MathSciNet  MATH  Google Scholar 

  • Jin F, Qian ZS, Chu YM, Rahman M (2022) On non-linear evolution model for drinking behavior under Caputo-Fabrizio derivative. J Appl Anal Comput 12(2):790–806

    MathSciNet  Google Scholar 

  • Kumar D, Baleanu D (2019) Fractional calculus and its applications in physics. Front Phys 7:81

    Google Scholar 

  • Kumbinarasaiah S, Adel W (2021) Hermite wavelet method for solving nonlinear Rosenau-Hyman equation. Partial Differ Equ Appl Math 4:100062

    Google Scholar 

  • Liao S (2003) Beyond perturbation: introduction to the homotopy analysis method. Chapman and Hall/CRC

  • Liao S (2009) Notes on the homotopy analysis method: some definitions and theorems. Commun Nonlinear Sci Numer Simul 14(4):983–997

    MathSciNet  MATH  Google Scholar 

  • Liao S (2012) Homotopy analysis method in nonlinear differential equations. Springer

    MATH  Google Scholar 

  • Machado JAT, Silva MF, Barbosa RS, Jesus IS, Reis CM, Marcos MG, Galhano AF (2010) Some applications of fractional calculus in engineering. Math Probl Eng. https://doi.org/10.1155/2010/639801

    MATH  Google Scholar 

  • Magin R (2004) Fractional calculus in bioengineering, part 1. Crit Rev Biomed Eng 32(1):1–104

    Google Scholar 

  • Magin RL (2010) Fractional calculus models of complex dynamics in biological tissues. Comput Math Appl 59(5):1586–1593

    MathSciNet  MATH  Google Scholar 

  • Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley

    MATH  Google Scholar 

  • Morales-Delgado VF, Gómez-Aguilar JF, Yépez-Martínez H, Baleanu D, Escobar-Jimenez RF, Olivares-Peregrino VH (2016) Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular. Adv Differ Equ 2016(1):1–17

    MathSciNet  MATH  Google Scholar 

  • Odibat ZM, Shawagfeh NT (2007) Generalized taylor’s formula. Appl Math Comput 186(1):286–293

    MathSciNet  MATH  Google Scholar 

  • Oldham K, Spanier J (1974) The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier

    MATH  Google Scholar 

  • Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier

    MATH  Google Scholar 

  • Prajapati VJ, Meher R (2022) A robust analytical approach to the generalized burgers-fisher equation with fractional derivatives including singular and non-singular kernels. J Ocean Engi Sci. https://doi.org/10.1016/j.joes.2022.06.035

    Google Scholar 

  • Rashid S, Abouelmagd EI, Khalid A, Farooq FB, Chu YM (2022) Some recent developments on dynamical h-discrete fractional type inequalities in the frame of non-singular and non-local kernels. Fractals 30(2):2240110

    MATH  Google Scholar 

  • Ray SS, Atangana A, Noutchie SC, Kurulay M, Bildik N, and Kilicman A (2014) Fractional calculus and its applications in applied mathematics and other sciences

  • Rosenau P, Hyman JM (1993) Compactons: solitons with finite wavelength. Phys. Rev. Lett. 70(5):564

    MATH  Google Scholar 

  • Rus F, Villatoro FR (2007) Padé numerical method for the rosenau–hyman compacton equation. Math Comput Simul 76(1–3):188–192

    MATH  Google Scholar 

  • Saadeh RZ, Ghazal BF (2021) A new approach on transforms: Formable integral transform and its applications. Axioms 10(4):332

    Google Scholar 

  • Sartanpara PP, Meher R (2021) A robust computational approach for Zakharov-Kuznetsov equations of ion-acoustic waves in a magnetized plasma via the Shehu transform. J Ocean Eng Sci. https://doi.org/10.1016/j.joes.2021.11.006

    Google Scholar 

  • Sartanpara PP, Meher R (2022a) A robust fuzzy-fractional approach for the atmospheric internal wave model. J Ocean Eng Sci. https://doi.org/10.1016/j.joes.2022.02.001

    Google Scholar 

  • Sartanpara PP, Meher R (2022b) The generalized time-fractional Fornberg-Whitham equation: an analytic approach. Partial Differ Equ Appl Math 5:100350. https://doi.org/10.1016/j.padiff.2022.100350

    Google Scholar 

  • Schiff JL (1999) The Laplace transform: theory and applications. Springer

    MATH  Google Scholar 

  • Singh J, Kumar D, Swroop R, Kumar S (2018) An efficient computational approach for time-fractional Rosenau-Hyman equation. Neural Comput Appl 30(10):3063–3070

    Google Scholar 

  • Tuan NH, Mohammadi H, Rezapour S (2020) A mathematical model for Covid-19 transmission by using the Caputo fractional derivative. Chaos, Solitons Fractals 140:110107

    MathSciNet  MATH  Google Scholar 

  • Verma L, Meher R (2022a) Solution for generalized fuzzy time-fractional Fisher’s equation using a robust fuzzy analytical approach. J Ocean Eng Sci. https://doi.org/10.1016/j.joes.2022.03.019

    Google Scholar 

  • Verma L, Meher R (2022b) Effect of heat transfer on Jeffery-Hamel Cu/Ag–water nanofluid flow with uncertain volume fraction using the double parametric fuzzy homotopy analysis method. Eur Phys J plus 137(3):1–20

    Google Scholar 

  • Verma L, Meher R, Avazzadeh Z, Nikan O (2022) Solution for generalized fuzzy fractional Kortewege-de varies equation using a robust fuzzy double parametric approach. J Ocean Eng Sci. https://doi.org/10.1016/j.joes.2022.04.026

    Google Scholar 

  • Wang F, Khan MN, Ahmad I, Ahmad H, Abu-Zinadah H, Chu YM (2022) Numerical solution of traveling waves in chemical kinetics: time-fractional fishers equations. Fractals 30(2):2240051–2240134

    MATH  Google Scholar 

  • Yulita MR, Noorani MS (2012) Solving the fractional Rosenau-Hyman equation via variational iteration method and homotopy perturbation method. Int J Differ Equ. https://doi.org/10.1155/2012/472030

    MathSciNet  MATH  Google Scholar 

  • Ziane D (2016) Application of homotopy analysis method combined with Elzaki transform for fractional porous medium equation. J Appr Theo Appl Math 6:1–19

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakanta Meher.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajapati, V.J., Meher, R. Solution of Time-Fractional Rosenau-Hyman Model Using a Robust Homotopy Approach via Formable Transform. Iran J Sci Technol Trans Sci 46, 1431–1444 (2022). https://doi.org/10.1007/s40995-022-01347-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-022-01347-w

Keywords

Navigation