Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The impending opacity challenge in exoplanet atmospheric characterization

Abstract

With a new generation of observatories coming online this decade, the process of characterizing exoplanet atmospheres will need to be reinvented. Currently mostly on the instrumental side, characterization bottlenecks will soon appear at the models used to translate spectra into atmospheric properties. Limitations stemming from our stellar and atmospheric models have already been highlighted. Here, we show that the current limitations of the opacity models used to decode exoplanet spectra propagate into an accuracy wall at ~0.5–1.0 dex (that is, three- to tenfold) on the atmospheric properties, which is an order of magnitude above the precision targeted by James Webb Space Telescope Cycle 1 programmes and needed, for example, for meaningful C/O-ratio constraints and biosignature identification. We perform a sensitivity analysis using nine different opacity models and find that most of the retrievals produce harmonious fits owing to compensations in the form of >5σ biases on the derived atmospheric parameters translating into the aforementioned accuracy wall. We suggest a two-tier approach to alleviate this problem, involving a new retrieval procedure and guided improvements in opacity data, their standardization and optimal dissemination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ensemble of opacity-model perturbations at the level of an opacity cross-section.
Fig. 2: Propagation of the ensemble of opacity-model perturbations to the level of a transmission spectrum.
Fig. 3: Transmission-spectrum fit quality unaffected by opacity-model perturbations.
Fig. 4: Propagation of the ensemble of opacity-model perturbations to the level of retrieved atmospheric properties.
Fig. 5: The 0.5–1.0 dex opacity-driven accuracy wall for exoplanet atmospheric characterization.

Similar content being viewed by others

Data availability

This paper makes use of the opacity data from the HITRAN201620, HITEMP201022 and ExoMol21 databases. The perturbed opacity cross-sections and the synthetic exoplanet transmission spectra are available from the corresponding author upon request and can be (re)generated using the tierraCrossSection and tierra codes (Code availability), respectively. Source data are provided with this paper.

Code availability

This work makes use of the following publicly available codes: emcee69, ExoCross42 and HAPI19. Additionally, it is based on tierra, which is now publicly available at https://github.com/disruptiveplanets/tierra, and tierraCrossSection, which is also available, at https://github.com/disruptiveplanets/tierraCrossSection.

References

  1. Burrows, A. S. Highlights in the study of exoplanet atmospheres. Nature 513, 345–352 (2014).

    Article  ADS  Google Scholar 

  2. Rackham, B. V., Apai, D. & Giampapa, M. S. The transit light source effect: false spectral features and incorrect densities for M-dwarf transiting planets. Astrophys. J. 853, 122 (2018).

    Article  ADS  Google Scholar 

  3. Caldas, A. et al. Effects of a fully 3D atmospheric structure on exoplanet transmission spectra: retrieval biases due to day–night temperature gradients. Astron. Astrophys. 623, A161 (2019).

    Article  Google Scholar 

  4. MacDonald, R. J., Goyal, J. M. & Lewis, N. K. Why is it so cold in here? Explaining the cold temperatures retrieved from transmission spectra of exoplanet atmospheres. Astrophys. J. 893, L43 (2020).

    Article  ADS  Google Scholar 

  5. Bétrémieux, Y. & Swain, M. R. An analytical formalism accounting for clouds and other ‘surfaces’ for exoplanet transmission spectroscopy. Mon. Not. R. Astron. Soc. 467, 2834–2844 (2017).

    Article  ADS  Google Scholar 

  6. Barstow, J. K. Unveiling cloudy exoplanets: the influence of cloud model choices on retrieval solutions. Mon. Not. R. Astron. Soc. 497, 4183–4195 (2020).

    Article  ADS  Google Scholar 

  7. Hu, R., Seager, S. & Bains, W. Photochemistry in terrestrial exoplanet atmospheres. I. Photochemistry model and benchmark cases. Astrophys. J. 761, 166 (2012).

    Article  ADS  Google Scholar 

  8. Heng, K. & Kitzmann, D. The theory of transmission spectra revisited: a semi-analytical method for interpreting WFC3 data and an unresolved challenge. Mon. Not. R. Astron. Soc. 470, 2972–2981 (2017).

    Article  ADS  Google Scholar 

  9. Welbanks, L. & Madhusudhan, N. On degeneracies in retrievals of exoplanetary transmission spectra. Astron. J. 157, 206 (2019).

    Article  ADS  Google Scholar 

  10. de Pater, I., DeBoer, D., Marley, M., Freedman, R. & Young, R. Retrieval of water in Jupiter’s deep atmosphere using microwave spectra of its brightness temperature. Icarus 173, 425–438 (2005).

    Article  ADS  Google Scholar 

  11. Hedges, C. & Madhusudhan, N. Effect of pressure broadening on molecular absorption cross sections in exoplanetary atmospheres. Mon. Not. R. Astron. Soc. 458, 1427–1449 (2016).

    Article  ADS  Google Scholar 

  12. Baudino, J.-L. et al. Toward the analysis of JWST exoplanet spectra: identifying troublesome model parameters. Astrophys. J. 850, 150 (2017).

    Article  ADS  Google Scholar 

  13. Gharib-Nezhad, E. & Line, M. R. The influence of H2O pressure broadening in high-metallicity exoplanet atmospheres. Astrophys. J. 872, 27 (2019).

    Article  ADS  Google Scholar 

  14. Greaves, E. et al. Phosphine gas in the cloud decks of Venus. Nat. Astron. 5, 655–664 (2021).

    Article  ADS  Google Scholar 

  15. Ranjan, S. et al. Photochemistry of anoxic abiotic habitable planet atmospheres: impact of new H2O cross sections. Astrophys. J. 896, 148 (2020).

    Article  ADS  Google Scholar 

  16. Fortney, J. et al. The need for laboratory measurements and ab initio studies to aid understanding of exoplanetary atmospheres. Astrophys. J. 2020, 146 (2019).

    Google Scholar 

  17. Giacobbe, P. et al. Five carbon- and nitrogen-bearing species in a hot giant planet’s atmosphere. Nature 592, 205–208 (2021).

    Article  ADS  Google Scholar 

  18. Batalha, N. & Line, M. R. Information content analysis for selection of optimal JWST observing modes for transiting exoplanet atmospheres. Astron. J. 153, 151 (2017).

    Article  ADS  Google Scholar 

  19. Kochanov, R. V. et al. HITRAN Application Programming Interface (HAPI): a comprehensive approach to working with spectroscopic data. J. Quant. Spectrosc. Radiat. Transf. 177, 15–30 (2016).

    Article  ADS  Google Scholar 

  20. Gordon, I. E. et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 203, 3–69 (2017).

    Article  ADS  Google Scholar 

  21. Tennyson, J. et al. The 2020 release of the ExoMol database: molecular line lists for exoplanet and other hot atmospheres. J. Quant. Spectrosc. Radiat. Transf. 255, 107–228 (2020).

    Article  Google Scholar 

  22. Rothman, L. S. et al. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010).

    Article  ADS  Google Scholar 

  23. de Wit, J. & Seager, S. Constraining exoplanet mass from transmission spectroscopy. Science 342, 1473–1477 (2013).

    Article  ADS  Google Scholar 

  24. Bhattacharya, A. On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc. 160, 99–109 (1943).

    MathSciNet  Google Scholar 

  25. Hargreaves, R. J. et al. An accurate, extensive, and practical line list of methane for the HITEMP database. Astrophys. J. Suppl. Ser. 247, 55 (2020).

    Article  ADS  Google Scholar 

  26. Wilzewski, J. S. et al. H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2. J. Quant. Spectrosc. Radiat. Transf. 168, 193–206 (2016).

    Article  ADS  Google Scholar 

  27. Tan, Y. et al. Introduction of water-vapor broadening parameters and their temperature-dependent exponents into the HITRAN database: Part I—CO2, N2O, CO, CH4, O2, NH3, and H2S. J. Quant. Spectrosc. Radiat. Transf. 124, 11580–11594 (2019).

    Google Scholar 

  28. Krishnaji, C. Molecular interaction and linewidth of the asymmetric molecule SO2. II. SO2–CO2 collisions. J. Chem. Phys. 38, 1019–1021 (1963).

    Article  ADS  Google Scholar 

  29. Ceselin, G. et al. CO2-, He- and H2-broadening coefficients of SO2 for ν1 band and ground state transitions for astrophysical applications. J. Quant. Spectrosc. Radiat. Transf. 203, 367–376 (2017).

    Article  ADS  Google Scholar 

  30. Dudaryonok, A. S. & Lavrentieva, N. N. Theoretical estimation of SO2 line broadening coefficients induced by carbon dioxide in the 150–300 K temperature range. J. Quant. Spectrosc. Radiat. Transf. 219, 360–365 (2018).

    Article  ADS  Google Scholar 

  31. Borkov, Y. G. et al. CO2-broadening and shift coefficients of sulfur dioxide near 4 μm. J. Quant. Spectrosc. Radiat. Transf. 225, 119–124 (2019).

    Article  ADS  Google Scholar 

  32. Hashemi, R. et al. Revising the line-shape parameters for air- and self-broadened CO2 lines toward a sub-percent accuracy level. J. Quant. Spectrosc. Radiat. Transf. 256, 107283 (2020).

    Article  Google Scholar 

  33. Gordon, I. E. et al. Current updates of the water-vapor line list in HITRAN: a new ‘Diet’ for air-broadened half-widths. J. Quant. Spectrosc. Radiat. Transf. 108, 389–402 (2017).

    Article  ADS  Google Scholar 

  34. Nguyen, H. T. et al. Line-shape parameters and their temperature dependence predicted from molecular dynamics simulations for O2- and air-broadened CO2 lines. J. Quant. Spectrosc. Radiat. Transf. 242, 106729 (2020).

    Article  Google Scholar 

  35. Jóźwiak, H. et al. Line-shape parameters and their temperature dependence predicted from molecular dynamics simulations for O2- and air-broadened CO2 lines. J. Chem. Phys. 154, 054314 (2021).

    Article  ADS  Google Scholar 

  36. Hartmann, J.-M. et al. A far wing lineshape for H2 broadened CH4 infrared transitions. J. Quant. Spectrosc. Radiat. Transf. 72, 117 (2002).

    Article  ADS  Google Scholar 

  37. Mlawer, E. J. et al. A far wing lineshape for H2 broadened CH4 infrared transitions. Philos. Trans. R. Soc. A 370, 2520–2556 (2012).

    Article  ADS  Google Scholar 

  38. Cousin, C. et al. Temperature dependence of the absorption in the region beyond the 43-μm band head of CO2. 2: N2 and O2 broadening. Appl. Opt. 24, 3899 (1985).

    Article  ADS  Google Scholar 

  39. Toon, G. C. et al. HITRAN spectroscopy evaluation using solar occultation FTIR spectra. J. Quant. Spectrosc. Radiat. Transf. 182, 324–336 (2016).

    Article  ADS  Google Scholar 

  40. Olsen, K. S. et al. Validation of the HITRAN 2016 and GEISA 2015 line lists using ACE-FTS solar occultation observations. J. Quant. Spectrosc. Radiat. Transf. 236, 106590 (2019).

    Article  Google Scholar 

  41. Rothman, L. S. et al. The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).

    Article  ADS  Google Scholar 

  42. Yurchenko, S. N., Al-Refaie, A. F. & Tennyson, J. ExoCross: a general program for generating spectra from molecular line lists. Astron. Astrophys. 614, A131 (2018).

    Article  ADS  Google Scholar 

  43. Dalgarno, A. & Williams, D. A. Properties of the hydrogen molecule. Proc. Phys. Soc. 85, 685–689 (1965).

    Article  ADS  Google Scholar 

  44. Sneep, M. & Ubachs, W. Direct measurement of the Rayleigh scattering cross section in various gases. J. Quant. Spectrosc. Radiat. Transf. 92, 293–310 (2005).

    Article  ADS  Google Scholar 

  45. Karman, T. et al. Update of the HITRAN collision-induced absorption section. Icarus 328, 160–175 (2019).

    Article  ADS  Google Scholar 

  46. Abel, M., Frommhold, L., Li, X. & Hunt, K. L. C. Collision-induced absorption by H2 pairs: from hundreds to thousands of kelvin. J. Phys. Chem. A 115, 6805–6812 (2011).

    Article  Google Scholar 

  47. Abel, M., Frommhold, L., Li, X. & Hunt, K. L. C. Infrared absorption by collisional H2–He complexes at temperatures up to 9000 K and frequencies from 0 to 20 000 cm−1. J. Chem. Phys. 136, 044319–044319 (2012).

    Article  ADS  Google Scholar 

  48. Lafferty, W. J., Solodov, A. M., Weber, A., Olson, W. B. & Hartmann, J.-M. Infrared collision-induced absorption by N2 near 4.3 μm for atmospheric applications: measurements and empirical modeling. Appl. Opt. 35, 5911–5917 (1996).

    Article  ADS  Google Scholar 

  49. Karman, T., van der Avoird, A. & Groenenboom, G. C. Quantum mechanical calculation of the collision-induced absorption spectra of N2–N2 with anisotropic interactions. J. Chem. Phys. 142, 084305 (2015).

    Article  ADS  Google Scholar 

  50. Hartmann, J. M., Boulet, C. & Toon, G. C. Collision-induced absorption by N2 near 2.16 μm: calculations, model, and consequences for atmospheric remote sensing. J. Geophys. Res. Atmos. 122, 2419–2428 (2017).

    Article  ADS  Google Scholar 

  51. Sousa-Silva, C., Petkowski, J. J. & Seager, S. Molecular simulations for the spectroscopic detection of atmospheric gases. Phys. Chem. Chem. Phys. 21, 18970–18987 (2019).

    Article  Google Scholar 

  52. Conrath, B., Gautier, D., Hanel, R., Lindal, G. & Marten, A. T. The helium abundance of Uranus from Voyager measurements. J. Geophys. Res. 92, 15003–15010 (1987).

    Article  ADS  Google Scholar 

  53. Fouchet, T., Lellouch, E. & Feuchtgruber, H. The hydrogen ortho-to-para ratio in the stratospheres of the giant planets. Icarus 161, 127–143 (2003).

    Article  ADS  Google Scholar 

  54. Zhang, M., Chachan, Y., Kempton, E. M. R. & Knutson, H. A. Forward modeling and retrievals with PLATON, a fast open-source tool. Publ. Astron. Soc. Pac. 131, 034501 (2019).

    Article  ADS  Google Scholar 

  55. Mollière, P. et al. petitRADTRANS. A Python radiative transfer package for exoplanet characterization and retrieval. Astron. Astrophys. 627, A67 (2019).

    Article  Google Scholar 

  56. Tremblin, P. et al. Fingering convection and cloudless models for cool brown dwarf atmospheres. Astrophys. J. Lett. 804, L17 (2015).

    Article  ADS  Google Scholar 

  57. Baudino, J.-L. et al. Interpreting the photometry and spectroscopy of directly imaged planets: a new atmospheric model applied to β Pictoris b and SPHERE observations. Astron. Astrophys. 582, A83 (2015).

    Article  Google Scholar 

  58. Batalha, N. E. et al. PandExo: a community tool for transiting exoplanet science with JWST & HST. Publ. Astron. Soc. Pac. 129, 064501 (2017).

    Article  ADS  Google Scholar 

  59. Schlawin, E. et al. JWST noise floor. I. Random error sources in JWST NIRCam time series. Astron. J. 160, 231 (2020).

    Article  ADS  Google Scholar 

  60. Sousa-Silva, C. et al. Phosphine as a biosignature gas in exoplanet atmospheres. Astrobiology 20, 235–268 (2020).

    Article  ADS  Google Scholar 

  61. Lincowski, A. et al. Evolved climates and observational discriminants for the TRAPPIST-1 planetary system. Astrophys. J. 867, 76 (2018).

    Article  ADS  Google Scholar 

  62. Li, G. et al. Rovibrational line lists for nine isotopologues of the CO molecule in the X 1Σ+ ground electronic state. Astrophys. J. Suppl. Ser. 216, 15 (2015).

    Article  ADS  Google Scholar 

  63. Wolniewicz, L., Simbotin, I. & Dalgarno, A. Quadrupole transition probabilities for the excited rovibrational states of H2. Astrophys. J. Suppl. Ser. 115, 293–313 (1998).

    Article  ADS  Google Scholar 

  64. Polyansky, O. L. et al. ExoMol molecular line lists XXX: a complete high-accuracy line list for water. Mon. Not. R. Astron. Soc. 480, 2597–2608 (2018).

    Article  ADS  Google Scholar 

  65. Yurchenko, S. N., Mellor, T. M., Freedman, R. S. & Tennyson, J. ExoMol line lists—XXXIX. Ro-vibrational molecular line list for CO2. Mon. Not. R. Astron. Soc. 496, 5282–5291 (2020).

    Article  ADS  Google Scholar 

  66. Yurchenko, S. N. & Tennyson, J. ExoMol line lists—IV. The rotation–vibration spectrum of methane up to 1500 K. Mon. Not. R. Astron. Soc. 440, 1649–1661 (2014).

    Article  ADS  Google Scholar 

  67. Yurchenko, S. N., Amundsen, D. S., Tennyson, J. & Waldmann, I. P. A hybrid line list for CH4 and hot methane continuum. Astron. Astrophys. 605, A95 (2017).

    Article  ADS  Google Scholar 

  68. Roueff, E. et al. The full infrared spectrum of molecular hydrogen. Astron. Astrophys. 630, A58 (2019).

    Article  Google Scholar 

  69. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

P.N. acknowledges the support of the Grayce B. Kerr Fellowship Fund and Elliot Fellowship at MIT. We thank B. V. Rackham, E. K. Conway and S. Seager for discussions on various topics presented in this paper. P.N. thanks P. Molliere for benchmark testing with petitRADTRANS. We acknowledge the MIT Supercloud and Lincoln Laboratory Supercomputing Center for providing (high-performance computing, database, consultation) resources that have contributed to the research results reported within this Article.

Author information

Authors and Affiliations

Authors

Contributions

J.d.W. designed the study. P.N. developed the computational framework for the study with the support of J.d.W., I.E.G., R.J.H., C.S.-S. and R.V.K.; P.N. and J.d.W. led the analysis and interpretation with the support of I.E.G., R.J.H. and C.S.-S. I.E.G., R.J.H. and C.S.-S. led the discussions regarding future avenues for improving opacity models. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Julien de Wit.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Jonathan Tennyson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Framework for sensitivity analysis of retrieved atmospheric properties to opacity model.

The four building blocks of the transmission spectra are shown in green, analysis techniques are marked in blue, and the orange parallelogram highlights the remote sensing technique at the center of this perturbation/sensitivity analysis. The arrows are shown to indicate the direction of the information flow. We perform self- and cross-retrieval for two planetary cases (a super-Earth around M-dwarf and a Jupiter-sized planet around K-dwarf, see Supplementary Table 2) with nine distinct sets of cross-sections (see Supplementary Table 1) to access their impacts.

Extended Data Fig. 2 Measurement uncertainties on absorption line parameters reported in HITRAN.

Uncertainties on the line parameters vs line intensities as reported in HITRAN for methane (red), water (yellow), ozone (blue), and carbon dioxide (brown). For each uncertainty range reported (y axis), the mean and median line intensity values are shown as empty and full diamonds, with the 1 and 2σ intensity ranges. The number of lines in each uncertainty range is reported on the right side of its 2σ interval. These uncertainties are used to perturb the four different parameters in the generation of CS-1SUP and CS-1SDN. The parameters of the strongest lines are reported with the smallest uncertainties. a: Uncertainty on the line position. b: Uncertainty on the line intensity. c: Uncertainty on the air broadening coefficient. d: Uncertainty on the temperature dependency of the air broadening coefficient. The uncertainty codes (average, default, unreported) are introduced in Ref. 41.

Source data

Extended Data Fig. 3 Benchmarking of tierra against petitRadtrans.

Benchmarking of tierra (R=100,000) against petitRadtrans for a Jupiter-sized planet around a K dwarf (0.55 R) for 365 K isothermal temperature with base pressure of 1 atm containing water at mixing ratio of 10−5 for a combined NIRSpec and MIRI observation. We use the cross-sections from petitRadtrans, which present a lower resolution on their temperature and pressure grids, to focus this benchmarking on tierra rather than possible difference on underlying cross-sections. The median absolute deviation between two models is 1.95 p.p.m. and RMS is 4.4 ppm which is marginal in comparison to the deviations seen in the model comparisons (Fig. 2).

Source data

Extended Data Fig. 4 Corner plot of the posterior probability distribution of the atmospheric parameters for a super-Earth.

Corner plot showing the PPDs of the retrieved parameters for the case of the super-Earth for self-retrieval (CS-DFLT, red) and cross-retrieval (CS-MAXB, green). The only difference between the two cross-sections relate to broadening; CS-DFLT assumes air-broadening (geocentric) while CS-MAXB assumes twice the maximum between air- and self-broadening. Strong biases are seen in the retrieved value of water (-6.97σ), carbon dioxide (-6.23σ), methane (-6.23σ), and ozone (-6.23σ). (Top Right) 500 random PT profiles constructed from the posteriors are shown for comparison against the true profile shown in black. The dotted line shows the contribution factor can change substantially due to the changes in the broadening values.

Source data

Extended Data Fig. 5 Propagation of the ensemble of opacity-model perturbations to the level of retrieved atmospheric properties for the warm-Jupiter scenario.

Posterior probability distributions (PPDs) of the retrieved atmospheric parameters for the warm-Jupiter scenario highlighting the biases induced by perturbations to the opacity model (see Methods). Each cross-section is identified by its color and label on the right. The dotted black vertical lines represent the true values used in generating the synthetic spectrum. Deviations with a statistical significance of up to 20σ and physical significance of over 1 dex are reported.

Source data

Extended Data Fig. 6 Corner plot of the posterior probability distribution of the atmospheric parameters for a warm-Jupiter.

Corner plot showing the PPDs of the retrieved parameters for the case of the warm-Jupiter for self-retrieval (CS-DFLT, red) and cross-retrieval (CS-SELF, blue). The only difference between the two cross-sections relate to self-broadening; CS-DFLT assumes air-broadening (geocentric) while CS-SELF assumes only self-broadening. Strong biases are seen in the retrieved value of T0 (7.32σ), T (2.64σ), carbon dioxide (7.32σ), methane (7.32σ), water (5.55σ), ozone (-5.57σ), and hydrogen (-3.97σ). (Top Right) 500 random PT profiles constructed from the posteriors are shown for comparison against the true profile shown in black. The dotted line shows the contribution factor can change substantially due to the changes in the pressure broadening values.

Source data

Extended Data Fig. 7 Retrieval sensitivity to CO affected by opacity model.

Plot highlighting the difference in sensitivity to CO’s number density between CS-DFLT (red) and CS-HTMP (gray) for the super-Earth case. (Top) Best-fit models are shown as solid lines while the models perturbed by -0.25 on Log10NCO are shown as dashed lines. (Bottom) Difference between best-fit and perturbed models, highlighting that the primary effect of a change in CO abundance is a change in scale height (all molecular features are affected). While a 0.25 change on Log10NCO from its best-fit value for CS-DFLT increases the χ2 by ~ 1,000, it does increases the χ2 for CS-HTMP by ~ 3,500 which explained the tighter constraint on CO reported in Fig. 3 and Supplementary Table 1.

Source data

Supplementary information

Supplementary Table 1

Parameters and line-list sources used in the generation of our set of nine different cross-sections.

Supplementary Table 2

Parameters used for the generation of synthetic models.

Supplementary Table 3

Retrieved parameters and their observed biases for the case of a super-Earth.

Supplementary Table 4

Retrieved parameters and their observed biases for the case of a warm Jupiter.

Source data

Source Data Fig. 1

Opacity cross-sections for water line/band around 1.37 μm.

Source Data Fig. 2

Transmission spectra for a warm Jupiter using nine different opacity models.

Source Data Fig. 3

Best-fit model for the cross-retrieval of a warm Jupiter from its synthetic transmission spectrum simulated with nominal cross-section CS-DFLT and retrieved with cross-section CS-SELF.

Source Data Fig. 4

Raw MCMC output for the atmospheric retrieval of the super-Earth scenario used to build the posterior distributions of the atmospheric parameters shown in Fig. 4.

Source Data Fig. 5

Spectrum statistical distance versus parametric statistical distance versus parametric physical distance for the nine different opacity models.

Source Data Extended Data Fig. 2

Statistics on the measurement uncertainties on absorption line parameters reported in HITRAN.

Source Data Extended Data Fig. 3

Benchmarking of tierra against petitRadtrans.

Source Data Extended Data Fig. 4

Raw MCMC output for the atmospheric retrieval of the super-Earth scenario used to build the posterior distributions of the atmospheric parameters shown in Extended Data Fig. 4.

Source Data Extended Data Fig. 5

Raw MCMC output for the atmospheric retrieval of the warm-Jupiter scenario used to build the posterior distributions of the atmospheric parameters shown in Extended Data Fig. 5.

Source Data Extended Data Fig. 6

Raw MCMC output for the atmospheric retrieval of the warm-Jupiter scenario used to build the posterior distributions of the atmospheric parameters shown in Extended Data Fig. 6.

Source Data Extended Data Fig. 7

Spectra of the models presented in Extended Data Fig. 7.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niraula, P., de Wit, J., Gordon, I.E. et al. The impending opacity challenge in exoplanet atmospheric characterization. Nat Astron 6, 1287–1295 (2022). https://doi.org/10.1038/s41550-022-01773-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01773-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing