Skip to main content
Log in

Effect of Co on Microstructure and Properties of NiCrCu Coating Produced by Plasma Cladding

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

With the speedy development and the continuous application of special alloy manufacturing nowadays, M2 high-speed (HSS) steel is difficult to meet industrial needs. For improving the red hardness and wear resistance of M2 HSS surface, 20 wt.% Co was added into NiCrCu alloy powder and preplaced it onto the surface of M2 HSS, and then, the coating was fabricated by plasma cladding. The organization structure and mechanical properties of coatings before and after Co addition were studied. The results show that the addition of Co strengthened the matrix in the form of substitutional solid solution. Co did not change the phase composition and microstructure characteristics of the coating, but it reduced the residual stress and undesirable residual austenite content of the coating. The surface quality and crack resistance of the coating were optimized. In addition, the red hardness and wear resistance of the coating were significantly improved after adding Co. The average hardness increased by 22.53%, the average friction coefficient decreased by 21.65%, and the volume wear decreased by 56.86% after the coating tempering at 550 °C for 4 h. Moreover, the average hardness of Co-containing coating decreased slowly after tempering for different times. The present work is of great significance in providing a potential guidance for broadening the HSS application fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References:

  1. M. Boccalini and H. Goldenstein, Solidification of High Speed Steels, Int. Mater. Rev., 2013, 46(2), p 92-115. https://doi.org/10.1179/095066001101528411

    Article  Google Scholar 

  2. C.H.M. Maia and R.O. Cunha Lima, Comparative Study Of Surface Modification Techniques through Average Flank Wear in High Speed Steel Tools Coated with Thin TiN Film, Surf. Coat. Technol., 2019, 366, p 124-130. https://doi.org/10.1016/j.surfcoat.2019.02.091

    Article  CAS  Google Scholar 

  3. S. Zhang, J.F. Li and Y.W. Wang, Tool Life and Cutting Forces in end Milling Inconel 718 under Dry and Minimum Quantity Cooling Lubrication Cutting Conditions, J. Cleaner Prod., 2012, 32, p 81-87. https://doi.org/10.1016/j.jclepro.2012.03.014

    Article  CAS  Google Scholar 

  4. S. Kuang, F. Zhou, S. Zheng and Q. Liu, Annealing-Induced Microstructure And Properties Evolution of Refractory MoFeCrTiWAlNb3 Eutectic high-entropy alloy Coating by Laser Cladding, Intermetallics, 2021, 129, 107039. https://doi.org/10.1016/j.intermet.2020.107039

    Article  CAS  Google Scholar 

  5. A. Vereschaka, V. Tabakov, S. Grigoriev, N. Sitnikov, F. Milovich, N. Andreev and J. Bublikov, Investigation of Wear Mechanisms for the rake Face OF a Cutting Tool With a Multilayer Composite Nanostructured Cr–CrN-(Ti, Cr, Al, Si)N Coating in High-Speed Steel Turning, Wear, 2019, 203069, p 438-439. https://doi.org/10.1016/j.wear.2019.203069

    Article  CAS  Google Scholar 

  6. I.S. Cho, A. Amanov and J.D. Kim, The Effects of AlCrN Coating, Surface Modification and their Combination on the Tribological Properties of High Speed Steel under Dry Conditions, Tribol. Int., 2015, 81, p 61-72. https://doi.org/10.1016/j.triboint.2014.08.003

    Article  CAS  Google Scholar 

  7. B. Fotovvati, N. Namdari and A. Dehghanghadikolaei, On Coating Techniques for Surface Protection: A Review, J Manufact. Mater. Process., 2019, 3(1), p 28. https://doi.org/10.3390/jmmp3010028

    Article  CAS  Google Scholar 

  8. H. Zhang, B. Dou, H. Tang, Y. He and S. Guo, Secondary Hardening in Laser Rapidly Solidified Fe68(MoWCrVCoNiAlCu)32 Medium-Entropy High-Speed Steel Coatings, Mater. Des., 2018, 159, p 224-231. https://doi.org/10.1016/j.matdes.2018.08.050

    Article  CAS  Google Scholar 

  9. Yu. Fuxing Ye, Z.L. Yang, L. Feng, L. Guo and Yu. Jianxing, Microstructure and Wear Resistance of TiC Reinforced AlCoCrFeNi2.1 Eutectic High Entropy Alloy Layer Fabricated by Micro-Plasma Cladding, Mater. Lett., 2021, 284, p 128859. https://doi.org/10.1016/j.matlet.2020.128859

    Article  CAS  Google Scholar 

  10. J. Yuan, Q. Wang, X. Liu, S. Lou, Q. Li and Z. Wang, Microstructures and High-Temperature Wear Behavior of NiAl/WC-Fex Coatings on Carbon Steel by Plasma Cladding, J. Alloys Compd., 2020, 842, 155850. https://doi.org/10.1016/j.jallcom.2020.155850

    Article  CAS  Google Scholar 

  11. Y. Peng, W. Zhang, T. Li, M. Zhang, B. Liu, Y. Liu, L. Wang and S. Hu, Effect of WC Content on Microstructures and Mechanical Properties of FeCoCrNi High-Entropy Alloy/WC Composite Coatings by Plasma Cladding, Surf. Coat. Technol., 2020, 385, 125326. https://doi.org/10.1016/j.surfcoat.2019.125326

    Article  CAS  Google Scholar 

  12. Y.-X. Zhou, J. Zhang, Z.-G. Xing, H.-D. Wang and Z.-L. Lv, Microstructure and Properties of NiCrBSi Coating by Plasma Cladding on Gray Cast Iron, Surf. Coat. Technol., 2019, 361, p 270-279. https://doi.org/10.1016/j.surfcoat.2018.12.055

    Article  CAS  Google Scholar 

  13. X. Li, Y. Wang, F. Wang and A. Liang, Ta2O5 in-Situ Composite Ta-Based Nanocrystalline Coating with Wonderful Wear Resistance and Related Wear Mechanisms, Mater. Lett., 2021, 298, 130000. https://doi.org/10.1016/j.matlet.2021.130000

    Article  CAS  Google Scholar 

  14. L. Zhang, D. Sun and H. Yu, Effect of Niobium ON THE Microstructure and Wear Resistance of Iron-Based Alloy Coating Produced by Plasma Cladding[J], Mater. Sci. Eng. A., 2008, 490(1–2), p 57-61. https://doi.org/10.1016/j.msea.2008.02.041

    Article  CAS  Google Scholar 

  15. D. Ghosh and S.K. Mitra, Plasma Sprayed Cr3C2 –Ni–Cr Coating For Oxidation Protection of 2·25Cr–1Mo Steel, Surf. Eng., 2014, 31(5), p 342-348. https://doi.org/10.1179/1743294414Y.0000000336

    Article  CAS  Google Scholar 

  16. D. Stathokostopoulos, D. Chaliampalias, N. Pliatsikas, S. Kassavetis, E. Pavlidou, P. Patsalas, S. Logothetidis, K. Chrissafis and G. Vourlias, Ti and Nitride Surface Modification of Copper by Pack Cementation, Surf. Eng., 2018, 34, p 243–250. https://doi.org/10.1080/02670844.2016.1274841

    Article  CAS  Google Scholar 

  17. S. Zhang, M. Lei, M. Wan and C. Huang, Morphology, Hardness and Wear Properties of Plasma Cladding NiCrCu Coating on M2 High-Speed Steel, Coatings, 2020, 10(7), p 641. https://doi.org/10.3390/coatings10070641

    Article  CAS  Google Scholar 

  18. D. Delagnes, P. Lamesle, M.H. Mathon, N. Mebarki and C. Levaillant, Influence of Silicon Content on the Precipitation of Secondary Carbides and Fatigue Properties of a 5%Cr Tempered Martensitic Steel, Mater. Sci. Eng. A., 2018, 394(1–2), p 435–444. https://doi.org/10.1016/j.msea.2004.11.050

    Article  CAS  Google Scholar 

  19. S. Xiang, R. Wu, W. Li, T. Hu and S. Huang, Improved Red Hardness and Toughness of Hot Work Die Steel through Tungsten Alloying, J. Mater. Eng. Perform., 2021, 30, p 6146-6159. https://doi.org/10.1007/s11665-021-05793-2

    Article  CAS  Google Scholar 

  20. C.-C. Wang, C. Zhang, Z.-G. Yang and J. Su, Carbide Precipitation and Element Distribution in High Co–Ni Secondary Hardening Steel, J. Iron Steel Res. Int., 2018, 25, p 340-346. https://doi.org/10.1007/s42243-018-0041-3

    Article  Google Scholar 

  21. Y.-K. Kim, K.-S. Kim, Y.-B. Song, J.H. Park, K.-A. Lee, 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness, J. Mater. Sci. Technol., 2021, 66(07), 36-45. https://doi.org/10.1016/j.jmst.2020.06.014

  22. H.K. Moon, K.B. Lee and H. Kwon, Influences of Co addition and austenitizing temperature on secondary hardening and impact fracture behavior in P/M high speed steels of W-Mo–Cr–V(–Co) system, Mater. Sci. Eng. A., 2008, 474(1–2), p 328–334. https://doi.org/10.1016/j.msea.2007.04.014

    Article  CAS  Google Scholar 

  23. H.-O. Wang Rong, H. Andrén and G.L.D. Wisell, The Role of Alloy Composition in the Precipitation Behaviour of High Speed Steels, Acta Metall. Mater., 1992, 40(7), p 1727-1738. https://doi.org/10.1016/0956-7151(92)90116-V

    Article  Google Scholar 

  24. P. Saravanan, K.S. Rao, D. Mishra, A. Perumal and V. Chandrasekaran, One-Step Synthesis of Sm-Co Spherical Granules via Superhydride Reduction, Adv. Sci. Lett., 2010, 3(1), p 49-52. https://doi.org/10.1166/asl.2010.1082

    Article  CAS  Google Scholar 

  25. Q. Wang, J. Shi, L. Zhang, S. Tsutsumi, J. Feng and N. Ma, Impacts of Laser Cladding Residual Stress and Material Properties of Functionally Graded Layers on Titanium Alloy Sheet, Addit. Manuf., 2020, 35, 101303. https://doi.org/10.1016/j.addma.2020.101303

    Article  CAS  Google Scholar 

  26. B. Ema, C. Nsb and D. Mt, Crack Mitigation in Laser Engineered net Shaping of WC-10wt%FeCr Cemented Carbides, Addit Manuf Lett., 2022, 2, 100028. https://doi.org/10.1016/j.addlet.2022.100028

    Article  Google Scholar 

  27. J. Lu, B. Wang, X. Qiu, Z. Peng and M. Ma, Microstructure Evolution and Properties of CrCuFe x NiTi High-Entropy Alloy Coating by Plasma Cladding on Q235, Surf. Coat. Technol., 2017, 328, p 313-318. https://doi.org/10.1016/j.surfcoat.2017.08.019

    Article  CAS  Google Scholar 

  28. D. Foster, M. Paladugu, J. Hughes, M. Kapousidou, U. Islam, A. Stark, N. Schell and E. Jimenez-Melero, In-Situ Synchrotron X-ray Diffraction During Quenching and Tempering of SAE 52100 Steel, Materials Today Communicat, 2021, 29, p 102930. https://doi.org/10.1016/j.mtcomm.2021.102930

    Article  CAS  Google Scholar 

  29. A. Manai, Effect of Weld Residual Stress on Fatigue Strength, ce/papers, 2021, 4(2–4), p 2504–2507. https://doi.org/10.1002/cepa.1579

    Article  Google Scholar 

  30. G.E. Totten, Steel Heat Treatment Handbook, Taylor & Francis, CRC, 1997.

    Google Scholar 

  31. M. Pilloz, J.M. Pelletier and A.B. Vannes, Residual Stresses Induced by Laser Coatings: Phenomenological Analysis And Predictions, J. Mater. Sci., 1992, 27(5), p 1240-1244. https://doi.org/10.1007/BF01142030

    Article  CAS  Google Scholar 

  32. C.D.M. Liljedahl, O. Zanellato, M.E. Fitzpatrick, J. Lin and L. Edwards, The Effect of Weld Residual Stresses and their Re-Distribution with Crack Growth during Fatigue under Constant Amplitude Loading, Int. J. Fatigue, 2010, 32(4), p 735–743. https://doi.org/10.1016/j.ijfatigue.2009.10.012

    Article  CAS  Google Scholar 

  33. L. Jiang, W.-Z. Zhang, Z.-F. Xu, H.-F. Huang, X.-X. Ye, B. Leng, L. Yan, Z.-J. Li and X.-T. Zhou, M 2 C and M 6 C Carbide Precipitation in Ni-Mo-Cr Based Superalloys Containing Silicon, Mater. Des., 2016, 112, p 300–308. https://doi.org/10.1016/j.matdes.2016.09.075

    Article  CAS  Google Scholar 

  34. H. Tang, H. Zhang, L. Chen and S. Guo, Novel Laser Rapidly Solidified Medium-Entropy High Speed Steel Coatings with Enhanced Hot Wear Resistance, J. Alloys Compd., 2019, 772, p 719-727. https://doi.org/10.1016/j.jallcom.2018.09.122

    Article  CAS  Google Scholar 

  35. F. Hu, K.M. Wu and H. Zheng, Influence of Co and Al on Bainitic Transformation in Super Bainitic Steels, Steel Res. Int., 2013, 84(10), p 1060–1065. https://doi.org/10.1002/srin.201200334

    Article  CAS  Google Scholar 

  36. H. Zhang, K. Nakajima, Su. Mengmeng, H. Shibata, P. Hedström, W. Wang, H. Lei, Q. Wang, P.G. Jönsson and J. He, Prediction of Influences of Co, Ni, and W Elements on Carbide Precipitation Behavior in Fe-C-V-Cr-Mo Based High Speed Steels, Steel. Res. Inter., 2018, 89(10), p 1800172. https://doi.org/10.1002/srin.201800172

    Article  CAS  Google Scholar 

  37. J. Yongxin, N. Haiyue, H. Zhifu, W. Yu and X. Jiandong, Three-body abrasive wear behaviors and mechanism analysis of Fe–B–C cast alloys with various Mn contents, J. Mater. Res. Technol., 2021, 14, p 1301-1311. https://doi.org/10.1016/J.JMRT.2021.07.035

    Article  Google Scholar 

  38. S.S. Wang, L. Chang, L. Wang, T. Wang, Y.D. Wu, J.J. Si, J. Zhu, M.X. Zhang and X.D. Hui, Microstructural stability and short-term creep properties of 12Cr–W–Mo–Co steel, Mater. Sci. Eng.: A, 2015, 622, p 204-211. https://doi.org/10.1016/j.msea.2014.11.024

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Science and Technology Cooperation Support of Guizhou province ([2021] General 314).

Author information

Authors and Affiliations

Authors

Contributions

YZ was involved in writing—review and editing, writing—original draft, investigation. ML contributed to writing—original draft, investigation.

CH, SJ, XY and MW were involved in writing—review and editing.

Corresponding author

Correspondence to Min Lei.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in the Journal of Thermal Spray Technology on New and Emerging Markets in Thermal Spray. The issue was organized by Dr. Andrew Vackel, Sandia National Laboratories; Dr. John Koppes, TST Engineered Coating Solutions; Prof. Bertrand Jodoin, University of Ottawa; Dr. Dheepa Srinivasan, Pratt and Whitney; and Prof. Shrikant Joshi, University West.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lei, M., Wan, M. et al. Effect of Co on Microstructure and Properties of NiCrCu Coating Produced by Plasma Cladding. J Therm Spray Tech 32, 936–947 (2023). https://doi.org/10.1007/s11666-022-01461-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01461-6

Keywords

Navigation