Skip to main content
Log in

Simple method to measure rheological properties of soft surfaces by a micro-needle contact

  • Tips and Tricks - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We developed a simple method to investigate rheological properties of soft surfaces, such as polymeric liquids and colloidal suspensions, by capturing the images of a metal micro-needle inserted into the surface. At contact, a meniscus-like deformation is formed on the surface. By relating the shape of the deformation to the balance of applied forces, local elasticity and viscosity just inside the surface are obtained. With a facile setup and rapid measurement process, the present method can be implemented to variety of systems, for instance, drying sessile drops and small volume of liquid confined in a capillary.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available on request from the corresponding author T.K. The data are not publicly available due to the confidential affairs.

References

  1. A.F. Routh, Rep. Prog. Phys. 76, 046603 (2013)

    Article  ADS  Google Scholar 

  2. D.E. Bornside, C.W. Macosko, L.E. Scriven, J. Appl. Phys. 66, 5185 (1989)

    Article  ADS  Google Scholar 

  3. M.E. Knipschildt, G.G. Andersen, Robinson: modern dairy technology (Springer, Boston, 1994), p.159

    Book  Google Scholar 

  4. P. Coussot, Rheometry of pastes, suspensions, and granular materials (Wiley, New Jersey, 2005), p.185

    Book  Google Scholar 

  5. P. Coussot, Eur. Phys. J. B 15, 557 (2000)

    Article  ADS  Google Scholar 

  6. P.-G. de Gennes, Eur. Phys. J. E 7, 31 (2002)

    Google Scholar 

  7. L. Daubersies, J.-B. Salmon, Phys. Rev. E 84, 031406 (2011)

    Article  ADS  Google Scholar 

  8. E. Keita, P. Faure, S. Rodts, P. Coussot, Phys. Rev. E 87, 062303 (2013)

    Article  ADS  Google Scholar 

  9. M. Okada, Y. Sumino, H. Ito, H. Kitahata, Phys. Rev. E 102, 042603 (2020)

    Article  ADS  Google Scholar 

  10. Y. Sumino, H. Kitahata, H. Seto, S. Nakata, K. Yoshikawa, J. Phys. Chem. B 113, 15709 (2009)

    Article  Google Scholar 

  11. T. Okuzono, K. Ozawa, M. Doi, Phys. Rev. Lett. 97, 136103 (2006)

    Article  ADS  Google Scholar 

  12. L. Pauchard, C. Allain, Eurphys. Lett. 62, 897 (2003)

    Article  ADS  Google Scholar 

  13. T. Kajiya, E. Nishitani, T. Yamaue, M. Doi, Phys. Rev. E 73, 011601 (2006)

    Article  ADS  Google Scholar 

  14. F. Boulogne, F. Giorgiutti-Dauphiné, L. Pauchard, Soft Matter 9, 750 (2013)

    Article  ADS  Google Scholar 

  15. S. Arai, M. Doi, Eur. Phys. J. E 36, 63 (2013)

    Article  Google Scholar 

  16. S. Mitani, K. Sakai, AIP Conf. Proc. 1027, 1153 (2008)

    Article  ADS  Google Scholar 

  17. Y. Yoshitake, S. Mitani, K. Sakai, K. Takagi, Phys. Rev. E 78, 041405 (2008)

    Article  ADS  Google Scholar 

  18. Y. Shimokawa, T. Kajiya, K. Sakai, M. Doi, Phys. Rev. E 84, 051803 (2011)

    Article  ADS  Google Scholar 

  19. R. Wunenburger, A. Casner, J.-P. Delville, Phys. Rev. E 73, 036315 (2006)

    Article  ADS  Google Scholar 

  20. M.T. Valentine, P.D. Kaplan, D. Thota, J.C. Crocker, T. Gisler, R.K. Prud’homme, M. Beck, D.A. Weitz, Phys. Rev. E 64, 061506 (2001)

    Article  ADS  Google Scholar 

  21. C. van der Wel, D.J. Kraft, J. Phys. Condens. Matter 29, 044001 (2017)

    Article  ADS  Google Scholar 

  22. E.M. Furst, T.M. Squires, Microrheology (Oxford, New York, 2017), p.198

    Google Scholar 

  23. T. Narita, K. Mayumi, G. Ducouret, P. Hébraud, Macromolecules 46, 4174 (2013)

    Article  ADS  Google Scholar 

  24. X. Xiong, S. Guo, Z. Xu, P. Sheng, P. Tong, Phys. Rev. E 80, 061604 (2009)

    Article  ADS  Google Scholar 

  25. J.D. de Baubigny, M. Benzaquen, L. Fabié, M. Delmas, J.-P. Aimé, M. Legros, T. Ondarçuhu, Langmuir 31, 9790 (2015)

    Article  Google Scholar 

  26. J.T. Pham, F. Schellenberger, M. Kappl, H.-J. Butt, Phys. Rev. Mater. 1, 015602 (2017)

    Article  Google Scholar 

  27. K. Guevorkian, M.-J. Colbert, M. Durth, S. Dufour, F.B. Wyart, Phys. Rev. Lett. 104, 218101 (2010)

    Article  ADS  Google Scholar 

  28. N.R. Chevalier, Ph. Dantan, E. Gazquez, A.J.M. Cornelissen, V. Fleury, Eur. Phys. J. E 39, 10 (2016)

    Article  Google Scholar 

  29. B. Andreotti, O. Bäumchen, F. Boulogne, K.E. Daniels, E.R. Dufresne, H. Perrin, T. Salez, J.H. Snoeijer, R.W. Style, Soft Matter 12, 2993 (2016)

    Article  ADS  Google Scholar 

  30. M.E.R. Shanahan, J. Phys. D: Appl. Phys. 20, 945 (1987)

    Article  ADS  Google Scholar 

  31. R.W. Style, C. Hyland, R. Boltyanskiy, J.S. Wettlaufer, E.R. Dufresne, Nat. Commun. 4, 2728 (2013)

    Article  ADS  Google Scholar 

  32. L. Dorogin, B.N.J. Persson, Soft Matter 14, 1142 (2018)

    Article  ADS  Google Scholar 

  33. L. Limat, Eur. Phys. J. E 35, 134 (2012)

    Article  Google Scholar 

  34. C. Clanet, D. Quéré, J. Fluid Mech. 460, 131 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  35. M.-J. Vega, D. Seveno, G. Lemaur, M.-H. Adão, J. De Coninck, Langmuir 21, 9584 (2005)

    Article  Google Scholar 

  36. P.-G. de Gennes, F.B. Wyart, D. Quéré, Capillarity and wetting phenomena (Springer, New York, 2004), p.107

    Book  MATH  Google Scholar 

  37. E.W. Washburn, Phys. Rev. 17, 273 (1921)

    Article  ADS  Google Scholar 

  38. C. Monteux, A. Tay, T. Narita, Y. de Wilde, F. Lequeux, Soft Matter 5, 3713 (2009)

    Article  ADS  Google Scholar 

  39. C. Arnold, F. Thalmann, C. Marques, P. Marie, Y. Holl, J. Phys. Chem. B 114, 9135 (2010)

    Article  Google Scholar 

  40. J.H. Snoeijer, A. Pandey, M.A. Herrada, J. Eggers, Proc. R. Soc. A 476, 20200419 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. T. Ogura for technical supports of fluorescence microscopy, and Dr. S. Ohira for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T.K. and H.N. devised the study. T.K. performed the experiment and analysis. K.M. and H.N. fabricated the micro-needles by electrochemical etching. T.K., D.S. and Y.M. made the theoretical discussion and wrote the manuscript. All authors contributed in completing the manuscript.

Corresponding author

Correspondence to Tadashi Kajiya.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajiya, T., Sawai, D., Miyata, K. et al. Simple method to measure rheological properties of soft surfaces by a micro-needle contact. Eur. Phys. J. E 45, 76 (2022). https://doi.org/10.1140/epje/s10189-022-00227-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00227-w

Navigation