Skip to main content
Log in

Manifestations of Degassing in Sedimentary Cover of the Southeastern Flank of the Knipovich Ridge (North Atlantic)

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

The paper analyzes the “bright spot” and “flat spot” anomalies of seismic data on the southeastern flank of the Knipovich Ridge associated with the accumulation of free gas in the sedimentary cover above the oceanic basement. The identified anomalies are associated spatially with negative values of the residual Bouguer anomaly and positive magnetic field (ΔТа) anomalies. This fact indicates the existence of decompaction zones in the crust and upper mantle related to serpentinization that can also provoke the superimposed, probably modern, chemogenic magnetization and distortion of the primary linear pattern of magnetic anomalies in the oceanic basement in the study area. Serpentinization was also responsible for vertical displacements of the crustal and upper mantle blocks on the flanks, leading to deformations of the sedimentary cover with the rock dilation. Off-axis seismicity indicates tectonic disruptions on flanks of the ridge with a higher access of water necessary for the serpentinization and the subsequent change in the physical properties of rocks reflected in geophysical fields. The eastern flank of the Knipovich Ridge underwent tectonic activation along the basement structures representing the northern extension of the Senja fracture zone, resulting in accumulations of free gas in the sedimentary cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Amundsen, I., Blinova, M., Hjelstuen, B., Mjelde, R., and Haflidason, H., The Cenozoic western Svalbard margin: sediment geometry and sedimentary processes in an area of ultraslow oceanic spreading, Mar. Geophys. Res., 2011, vol. 32, pp. 441–453.

    Article  Google Scholar 

  2. Balmino, G., Vales, N., Bonvalot, S., and Briais, A., Spherical harmonic modeling to ultra-high degree of Bouguer and isostatic anomalies, J. Geod., 2012, vol. 86, pp. 499–520.

    Article  Google Scholar 

  3. Baturin, D.G., Structure of the sedimentary cover and development of the Spitsbergen continental margin, in Osadochnyi chekhol Zapadno-Arkticheskoi metaplatformy (Sedimentary Cover of the West Arctic Megaplatform), Murmansk, 1993, pp. 35–47.

    Google Scholar 

  4. Bougault, H., Hydrogène et méthane hydrothermal: Enjeux scientifiques une ressource potentielle nouvelle?, Mines Carr. Industr. Miner., 2012, no. 196, pp. 73–80.

  5. Chamov, N.P., Sokolov, S.Yu., Kostyleva, V.V., Efimov, V.N., Peive, A.A., Aleksandrova, G.N., Bylinskaya, M.E., Radionova, E.P., and Stupin, S.I., Structure and composition of the sedimentary cover in the Knipovich Rift Valley and Molloy Deep (Norwegian–Greenland Basin), Lithol. Miner. Resour., 2010, no. 6, pp. 532–554.

  6. Charlou, J.L., Fouquet, Y., Bougault, H., Donval, J.P., Etoubleau, J., Jean-Baptiste, P., Dapoigny, A., Appriou, P., and Rona, P., Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15o20' N fracture zone and the Mid-Atlantic Ridge, Geochim. Cosmochim. Acta, 1998, vol. 62, no. 13, pp. 2323–2333.

    Article  Google Scholar 

  7. Cherkashev, G.A., Gusev, E.A., Zhirnov, E.A., Tamaki, K., Kurevits, D., Okino, K., Sato, H., Baranov, B.V., Egorov, A.V., German, K., Crane, K., and Sushchevskaya, N.M., The Knipovich Ridge Rift Zone: Evidence from the Knipovich-2000 expedition, Dokl. Earth Sci., 2001, vol. 378, pp. 420–423.

    Google Scholar 

  8. Delescluse, M. and Chamot-Rooke, N., Serpentinization pulse in the actively deforming Central Indian Basin, Earth Planet. Sci. Lett., 2008, vol. 276, pp. 140–151.

    Article  Google Scholar 

  9. Dmitriev, L.V., Bazylev, B.A., Silantiev, S.A., Borisov, M.V., Sokolov, S.Yu., and Bougault, H., Hydrogen and methane formation with serpentization of mantle hyperbasite of the ocean and oil generation, Russ. J. Earth Sci., 1999, vol. 1, no. 6, pp. 511–519.

    Article  Google Scholar 

  10. Fizicheskie svoistva gornykh porod i poleznykh iskopaemykh (petrofizika). Spravochnik geofizika (Physical Properties of Rocks and Useful Minerals– Petrophysics): A Manual for Physicists), Dortman, N.B., Ed., Moscow: Nedra, 1984.

    Google Scholar 

  11. Gernigon, L., Franke, D., Geoffroy, L., Schiffer, C., Foulger, G.R., and Stoker, M., Crustal fragmentation, magmatism, and the diachronous opening of the Norwegian-Greenland Sea, Earth-Sci. Rev., 2020, vol. 206, pp. 1–37.

    Article  Google Scholar 

  12. Johnson, J.E., Mienert, J., Plaza-Faverola, A., Vadakkepuliyambatta, S., Knies, J., Bünz S., Andreassen K., and Ferré B., Abiotic methane from ultraslow-spreading ridges can charge Arctic gas hydrates, Geology, 2015, vol. 43, no. 5, pp. 371–374.

  13. Kandilarov, Ferre, B., Abiotic methane from ultraslow-spreading ridges can charge Arctic gas hydrates, A., Mjelde, R., Okino, K., and Murai, Y., Crustal structure of the ultra-slow spreading Knipovich Ridge, North Atlantic, along a presumed amagmatic portion of oceanic crustal formation, Mar. Geophys. Res., 2008, vol. 29, pp. 109–134.

    Article  Google Scholar 

  14. Kandilarov, A., Landa, H., Mjelde, R., Pedersen, R.B., Okino, K., and Murai, Y., Crustal structure of the ultra-slow spreading Knipovich Ridge, North Atlantic, along a presumed ridge segment center, Mar. Geophys. Res., 2010, vol. 31, pp. 173–195.

    Article  Google Scholar 

  15. Keir, R.S., Greinert, J., Rhein, M., and Petrick, G., Sültenfuß, J., and Fürhaupter, K., Methane and methane carbon isotope ratios in the Northeast Atlantic including the Mid-Atlantic Ridge (50° N), Deep-Sea Res. I, 2005, vol. 52, pp. 1043–1070.

    Article  Google Scholar 

  16. Kvarven, T., Hjelstuen, B., and Mjelde, R., Tectonic and sedimentary processes along the ultraslow Knipovich spreading ridge, Mar. Geophys. Res., 2014, vol. 35, pp. 89–103.

    Article  Google Scholar 

  17. Maus, S., Barckhausen, U., Berkenbosch, H., Bournas, N., Brozena, J., Childers, V., Dostaler, F., Fairhead, J.D., Finn, C., von Frese, R.R.B., Gaina, C., Golynsky, S., Kucks, R., Luhr, H., Milligan, P., Mogren, S., Müller, R.D., Olesen, O., Pilkington, M., Saltus, R., Schreckenberger, B., Thebault, E., and Tontini, F.C., EMAG2: A 2-arc-minute resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne and marine magnetic measurements, Geochem. Geophys. Geosys., 2009, vol. 10, no. 8, pp. 1–12.

    Article  Google Scholar 

  18. Mosar, J., Eide, E.A., and Osmundsen, P., et al., Greenland-Norway separation. A geodynamic model for the North Atlantic, Norw. J. Geol., 2002, vol. 82, pp. 281–298.

    Google Scholar 

  19. NORSAR Reviewed Regional Seismic Bulletin. 2012. Available from http://www.norsardata.no/NDC/bulletins/regional/.

  20. Olesen, O.G., Gellein, J., Habrekke, H., et al., Magnetic Anomaly Map, Norway and Adjacent Ocean Areas, Scale 1:3 Million, Geol. Surv. Norway, 1997.

  21. Plaza-Faverola, A. and Keiding, M., Correlation between tectonic stress regimes and methane seepage on the western Svalbard margin, Solid Earth, 2019, vol. 10, pp. 79–94.

    Article  Google Scholar 

  22. Rajan, A., Mienert, J., Bunz, S., and Chand, S., Potential serpentinization, degassing, and gas hydrate formation at a young (<20 Ma) sedimented ocean crust of the Arctic Ocean ridge system, J. Geophys. Res., 2012, vol. 117, p. B03102.

    Google Scholar 

  23. Rebesco, M., Wahlin, A., Laberg, J.S., et al., Quaternary contourite drifts of the Western Spitsbergen margin, Deep-Sea Res. I, 2013, vol. 79, pp. 156–168.

    Article  Google Scholar 

  24. Rebesco, M., Hernández -Molina, F.J., Van Rooij, D., and Wahlin, A., Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations, Mar. Geol., 2014, vol. 352, pp. 111–154.

    Article  Google Scholar 

  25. Peive, A.A. and Chamov, N.P., Basic tectonic features of the Knipovich Ridge (North Atlantic)and its Neotectonic evolution, Geotectonics, 2008, no. 1, pp. 31–47.

  26. Sokolov, S.Yu., Tectonic evolution of the Knipovich Ridge based on the anomalous nagnetic field, Dokl. Earth Sci., 2011, vol. 437, no. 3, pp. 343–348.

    Article  Google Scholar 

  27. Sokolov, S.Yu., Abramova, A.S., Moroz, E.A., and Zaraiskaya, Yu.A., Amplitudes of fractures on flanks of the Knipovich Ridge (North Atlantic): Indicator of modern regional geodynamics, Geodinam.Tektonofiz., 2017, vol. 8, no. 4, pp. 769–789.

    Article  Google Scholar 

  28. Shipilov, E.V., Shkarubo, S.I., and Raznitsin, Yu.N., Neotectonics of the northern Norwegian–Greenland Basin: Specific features and evolution of the Knipovich Ridge and Pomorsky perioceanic trough, Dokl. Earth Sci., 2006, vol. 410, no. 4, pp. 1056–1061.

    Article  Google Scholar 

  29. Shkarubo, S.I., Secific features of spreading in the northern Nowegian–Greenland Basin, in Geologo-geofizicheskie kharakteristiki litosfery Arkticheskogo regiona (Geological-Geophysical Characteristics of the Arctic Lithosphere), St. Petersburg: VNIIOkeangeologiya, 1996, pp. 101–114.

  30. Yampol’skiy, K.P. and Sokolov, S.Yu., Sedimentary cover and Bouguer anomalies in the northern part of the Knipovich Ridge, Dokl. Earth Sci., 2012, vol. 442, no. 4, pp. 188–192.

    Article  Google Scholar 

  31. Straume, E.O., Gaina, C., Medvedev, S., Hochmuth, K., Gohl, K., Whittaker, J.M., et al., Globsed: updated total sediment thickness in the world’s oceans, Geochem. Geophys. Geosyst., 2019, vol. 20, pp. 1756–1772.

    Article  Google Scholar 

  32. Waghorn, K.A., Bünz, S., Plaza-Faverola, A., and Johnson, J.E., 3D seismic investigation of a gas hydrate and fluid flow system on an active mid-ocean ridge; Svyatogor Ridge, Fram Strait, Geochem. Geophys. Geosyst., 2018, vol. 19, pp. 2325–2341.

    Article  Google Scholar 

  33. Zaionchek, A.V., Brekke, Kh., Sokolov, S.Yu., Mazarovich, A.O., Dobrolyubova, K.O., Efimov, V.N., Abramova, A.S., Zaraiskaya, Yu.A., Kokhan, A.V., Moroz, E.A., Peive, A.A., Chamov, N.P., and Yampol’skii, K.P., Structure of the continent-ocean transition zone in the northwestern framing of the Barentsmoray Sea (based on the data from cruises 24, 25, and 26 of the R/V Akademik Nikolaj Strakhov (2006–2009), in Stroenie i istoriya razvitiya litosfery (Structure and History of the Lithosphere Development), Moscow: Paulsen, 2010, vol. 4, pp. 111–157.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express gratitude to Russian Federal Geological Fund (https://rfgf.ru) for access to unpublished materials needed for the research and to Marine Arctic Geological Expedition for the CDP-SRM digital data. The authors are also grateful to two anonymous reviewers whose comments helped to improve the text and graphic materials in the paper.

Funding

This work was supported by State Tasks of the Geological Institute, Russian Academy of Sciences. The primary processing of seismic data was financed by the Russian Foundation of Basic Research project no. 18-05-70 040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Sokolov.

Additional information

Translated by D. Sakya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, S.Y., Agranov, G.D., Shkarubo, S.I. et al. Manifestations of Degassing in Sedimentary Cover of the Southeastern Flank of the Knipovich Ridge (North Atlantic). Lithol Miner Resour 57, 380–391 (2022). https://doi.org/10.1134/S0024490222050078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490222050078

Keywords:

Navigation