Skip to main content

Advertisement

Log in

Microstructure and Tribological Behavior of Supersonic Atmospheric Plasma-Sprayed Mo-/Fe-Based Amorphous Coating

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Fe-based amorphous coatings have been widely used for various industrial applications due to some excellent characteristics such as high hardness, high strength and high corrosion resistance. However, the poor oxidation resistance greatly limits their application in the field of high-temperature friction and wear. Compared with a Fe-based amorphous coating, a Mo-based amorphous coating is expected to have superior anti-wear performance at elevated temperatures. In this study, Mo- and Fe-based amorphous coatings were deposited by the supersonic atmospheric plasma spraying (SAPS) method. The microstructure and sliding wear behavior of the coatings were comparatively studied. It was found that the wear resistance of the Mo-based amorphous coating was higher than that of the Fe-based amorphous coating although the hardness of the former was a little lower than that of the latter. As the temperature increased to 250 °C, the weak bonding of the inter-splat interface and the formation of hard α-Fe2O3 debris aggravated the three-body abrasive wear and therefore worsened the tribological responses of the coatings. With the increase of temperature, the wear mechanism of the Mo- and the Fe-based amorphous coatings gradually transformed from dominate fatigue wear, with abrasive wear as a secondary mechanism, to dominate abrasive wear, accompanied by oxidation wear.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.R. Sichani, M. Salehi, H. Edris, and M.T. Farani, The Effect of APS Parameter on the Microstructural, Mechanical and Corrosion Properties of Plasma Sprayed Ni-Ti-Al Intermetallic Coatings, Surf. Coat. Technol., 2017, 309, p 959-968.

    Article  Google Scholar 

  2. X. Hong, Y. Tan, C. Zhou, T. Xu, and Z. Zhang, Microstructure and Tribological Properties of Zr-Based Amorphous-Nanocrystalline Coatings Deposited on the Surface of Titanium Alloys by Electrospark Deposition, Appl. Surf. Sci., 2015, 356, p 1244-1251.

    Article  CAS  Google Scholar 

  3. Y. Wang, G. Li, Z. Shi, M. Liu, X. Zhang, and Y. Liu, Effects of Graphite Addition on the Microstructure and Properties of Laser Cladding Zr-Al-Ni-Cu Amorphous Coatings, J. Alloys Compd., 2014, 610, p 713-717.

    Article  CAS  Google Scholar 

  4. C.P. Jiang, Y.Z. Xing, and J.M. Hao, Effect of Heat Treatment on Plasma-Sprayed Mo-Based Amorphous and Nanocrystalline Coating, J. Compu. Theor. Nanos., 2012, 9, p 1434-1437.

    Article  CAS  Google Scholar 

  5. H. Miura, S. Isa, and K. Omuro, Production of Amorphous Fe-Ni Based Alloys by Flame-Spray Quenching, Trans. Jpn. I. Met., 1981, 22, p 597-606.

    Article  CAS  Google Scholar 

  6. A. Kobayashi, S. Yano, and H. Kimura, Fe-Based Metallic Glass Coatings Produced by Smart Plasma Spraying Process, Mater. Sci. Eng. B, 2008, 148, p 110-113.

    Article  CAS  Google Scholar 

  7. C.R. Si, B.B. Duan, Q. Zhang, J. Cai, and W.C. Wu, Microstructure, Corrosion-Resistance, and Wear-Resistance Properties of Subsonic Flame Sprayed Amorphous Fe-Mo-Cr-Co Coating with Extremely High Amorphous Rate, J. Mater. Res. Technol., 2020, 9, p 3292-3303.

    Article  CAS  Google Scholar 

  8. L. Lin, G.L. Li, H.D. Wang, J.J. Kang, Z.L. Xu, and H.J. Wang, Structure and Wear Behavior of NiCr-Cr3C2 Coatings Sprayed by Supersonic Plasma Spraying and High Velocity Oxy-Fuel Technologies, Appl. Surf. Sci., 2015, 356, p 383-390.

    Article  CAS  Google Scholar 

  9. T.J. Lina, H.H. Sheu, C.Y. Leed, and H.B. Lee, The Study of Mechanical Properties and Corrosion Behavior of the Fe-Based Amorphous Alloy Coatings using High Velocity Oxygen Fuel Spraying, J. Alloys Compd., 2021, 867, p 159132.

    Article  Google Scholar 

  10. C. Zhang, L. Liu, K.C. Chan, Q. Chen, and C.Y. Tang, Wear Behavior of HVOF-Sprayed Fe-Based Amorphous Coatings, Intermetallics, 2012, 29, p 80-85.

    Article  Google Scholar 

  11. H. Choi, S. Lee, B. Kim, H. Jo, and C. Lee, Effect of In-Flight Particle Oxidation on the Phase Evolution of HVOF NiTiZrSiSn Bulk Amorphous Coating, J. Mater. Sci., 2005, 40, p 6121-6126.

    Article  CAS  Google Scholar 

  12. W. Wang, C. Zhang, P. Xu, M. Yasir, and L. Liu, Enhancement of Oxidation and Wear Resistance of Fe-Based Amorphous Coatings by Surface Modification of Feedstock Powders, Mater. Des., 2015, 73, p 35-41.

    Article  Google Scholar 

  13. Q. Liu, Y. Bai, H.D. Wang, G.Z. Ma, M. Liu, C.Y. Chu, Y.W. Sun, W. Fan, F. Ding, B. Zhao, and Y.T. Wang, Microstructural Evolution of Carbides and Its Effect on Tribological Properties of SAPS or HVOF Sprayed NiCr-Cr3C2 Coatings, J. Alloys Compd., 2019, 803, p 730-741.

    Article  CAS  Google Scholar 

  14. Y.Y. Zhou, G.Z. Ma, H.D. Wang, G.L. Li, S.Y. Chen, and B.G. Fu, Microstructures and Tribological Properties of Fe-Based Amorphous Metallic Coatings Deposited via Supersonic Plasma Spraying, J. Therm. Spray Technol., 2017, 26, p 1257-1267.

    Article  CAS  Google Scholar 

  15. Y.Y. Zhou, G.Z. Ma, H.D. Wang, G.L. Li, S.Y. Chen, H.J. Wang, and M. Liu, Fabrication and Characterization of Supersonic Plasma Sprayed Fe-Based Amorphous Metallic Coatings, Mater. Des., 2016, 110, p 332-339.

    Article  CAS  Google Scholar 

  16. G. Bolelli, B. Bonferroni, J. Laurila, L. Lusvarghi, A. Milanti, K. Niemi, and P. Vuoristo, Micromechanical Properties and Sliding Wear Behaviour of HVOF-Sprayed Fe-Based Alloy Coatings, Wear, 2012, 276-277, p 29-47.

    Article  CAS  Google Scholar 

  17. D.D. Liang, J. Ma, Y.F. Cai, X.D. Liu, S.D. Xie, X.S. Wei, G. Xu, and J. Shen, Characterization and Elevated-Temperature Tribological Performance of AC-HVAF-Sprayed Fe-Based Amorphous Coating, Surf. Coat. Technol., 2020, 387, p 125535.

    Article  CAS  Google Scholar 

  18. W.M. Guo, Y.P. Wu, J.F. Zhang, and W.H. Yuan, Effect of the Long-Term Heat Treatment on the Cyclic Oxidation Behavior of Fe-Based Amorphous/Nanocrystalline Coatings Prepared by High-Velocity Arc Spray Process, Surf. Coat. Technol., 2016, 307, p 392-398.

    Article  CAS  Google Scholar 

  19. W.M. Guo, J.F. Zhang, Y.P. Wu, S. Hong, and Y.J. Qin, Fabrication and Characterization of Fe-Based Amorphous Coatings Prepared by High-Velocity Arc Spraying, Mater. Des., 2015, 78, p 118-124.

    Article  CAS  Google Scholar 

  20. T.J. Wang, Unified CDM Model and Local Criterion for Ductile Fracture-I. Unified CDM Model for Ductile Fracture, Eng. Fract. Mech., 1992, 42, p 177-183.

    Article  Google Scholar 

  21. D.D. Liang, X.S. Wei, C.T. Chang, J.W. Li, X.M. Wang, and J. Shen, Effect of W Addition on the Glass Forming Ability and Mechanical Properties of Fe-Based Metallic Glass, J. Alloys Compd., 2018, 731, p 1146-1150.

    Article  CAS  Google Scholar 

  22. S. Hata, J. Sakurai, R. Yamauchi, and A. Shimokohbe, Search for Novel Amorphous Alloys with High Crystallization Temperature by Combinatorial Arc Plasma Deposition, J. Appl. Surf. Sci., 2007, 254, p 738-742.

    Article  CAS  Google Scholar 

  23. D.D. Liang, X.S. Wei, Y. Wang, H.R. Jiang, and J. Shen, Electrochemical Behaviors and Passive Film Properties of Fe-Based Bulk Metallic Glass in Cl-Containing Acetic Acid Solutions under High Temperature, J. Alloys Compd., 2018, 766, p 964-972.

    Article  CAS  Google Scholar 

  24. A.A. Burkov and P.G. Chigrin, Effect of Tungsten, Molybdenum, Nickel and Cobalt on the Corrosion and Wear Performance of Fe-Based Metallic Glass Coatings, Surf. Coat. Technol., 2018, 351, p 68-77.

    Article  CAS  Google Scholar 

  25. C.P. Jiang, Y.Z. Xing, F.Y. Zhang, and J.M. Hao, Microstructure and Corrosion Resistance of Fe/Mo Composite Amorphous Coatings Prepared by Air Plasma Spraying, Int. J. Miner. Metall. Mater., 2012, 19, p 657-662.

    Article  CAS  Google Scholar 

  26. X.C. Zhang, B.S. Xu, F.Z. Xuan, H.D. Wang, Y.X. Wu, and S.T. Tu, Statistical Analyses of Porosity Variations in Plasma-Sprayed Ni-Based Coatings, J. Alloys Compd., 2009, 467(1-2), p 501-508.

    Article  CAS  Google Scholar 

  27. M. Wang, Z. Zhou, Q. Wang, Y. Liu, and X. Zhang, Box-Behnken Design to Enhance the Corrosion Resistance of Plasma Sprayed Fe-Based Amorphous Coating, Results Phys., 2019, 15, p 102708.

    Article  Google Scholar 

  28. G. Bolelli, L.M. Berger, T. Börner, H. Koivuluoto, V. Matikainen, L. Lusvarghi, C. Lyphout, N. Markocsan, P. Nylén, P. Sassatelli, R. Trache, and P. Vuoristo, Sliding and Abrasive Wear Behaviour of HVOF- and HVAF-Sprayed Cr3C2-NiCr Hardmetal Coatings, Wear, 2016, 358-359, p 32-50.

    Article  CAS  Google Scholar 

  29. S. Matthews, Development of High Carbide Dissolution/Low Carbon Loss Cr3C2-NiCr Coatings by Shrouded Plasma Spraying, Surf. Coat. Technol., 2014, 258, p 886-900.

    Article  CAS  Google Scholar 

  30. V. Matikainen, G. Bolelli, H. Koivuluoto, P. Sassatelli, L. Lusvarghi, and P. Vuoristo, Sliding Wear Behaviour of HVOF and HVAF Sprayed Cr3C2-Based Coatings, Wear, 2017, 388-389, p 57-71.

    Article  CAS  Google Scholar 

  31. C. Verdon, A. Karimi, and J.L. Martin, A Study of High Velocity Oxy-Fuel Thermally Sprayed Tungsten Carbide Based Coatings. Part1: Microstructures, Mater. Sci. Eng. A, 1998, 246, p 11-24.

    Article  Google Scholar 

  32. F.Y. Shu, Z. Tian, H.Y. Zhao, W.X. He, S.H. Sui, and B. Liu, Synthesis of Amorphous Coating by Laser Cladding Multi-Layer Co-Based Self-Fluxed Alloy Powder, Mater. Lett., 2016, 176, p 306-309.

    Article  CAS  Google Scholar 

  33. A.G. Evans and E.A. Charles, Fracture Toughness Determinations by Indentation, J. Am. Ceram. Soc., 1976, 59, p 371-376.

    Article  CAS  Google Scholar 

  34. A. Moradkhani, H. Baharvandi, and A. Naserifar, Fracture Toughness of 3Y-TZP Dental Ceramics by Using Vickers Indentation Fracture and SELNB Methods, J. Korean Ceram. Soc., 2019, 56, p 37-48.

    Article  CAS  Google Scholar 

  35. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements, J. Am. Ceram. Soc., 1981, 64, p 773-783.

    Article  Google Scholar 

  36. M.M. Lima, C. Godoy, P.J. Modenesi, J.C. Avelar-Batista, A. Davison and A. Matthews, Coating Fracture Toughness Determined by Vickers Indentation: An Important Parameter in Cavitation Erosion Resistance of WC-Co Thermally Sprayed Coatings, Surf. Coat. Technol., 2004, 177, p 489-496.

    Article  Google Scholar 

  37. L.Z. Du, C.B. Huang, W.G. Zhang, T.G. Li, and W. Liu, Preparation and Wear Performance of NiCr/Cr3C2-NiCr/hBN Plasma Sprayed Composite Coating, Surf. Coat. Technol., 2011, 205, p 3722-3728.

    Article  CAS  Google Scholar 

  38. F. Huang, J.J. Kang, W. Yue, X.B. Liu, Z.Q. Fu, L.N. Zhu, D.S. She, G.Z. Ma, H.D. Wang, J. Liang, W. Weng, and C.B. Wang, Effect of Heat Treatment on Erosion-Corrosion of Fe-Based Amorphous Alloy Coating under Slurry Impingement, J. Alloys Compd., 2020, 820, p 153132.

    Article  CAS  Google Scholar 

  39. X.J. Ran, J.T. Shang, L.M. Wang, and X. Zhang, Effect of Porosity on Wear Behaviour of Remanufacturing Cr3C2-NiCr Coatings under Oil Lubrication, Proc. Manuf., 2020, 43, p 487-494.

    Google Scholar 

  40. A.H. Dent, A.J. Horlock, D.G. McCartnery, and S.J. Harris, Microstructural Characterisation of a Ni-Cr-B-C Based Alloy Coating Produced by High Velocity Oxy-Fuel Thermal Spraying, Surf. Coat. Technol., 2001, 139, p 244-250.

    Article  CAS  Google Scholar 

  41. R.Q. Guo, C. Zhang, Q. Chen, Y. Yang, N. Li, and L. Liu, Study of Structure and Corrosion Resistance of Fe-Based Amorphous Coatings Prepared by HVAF and HVOF, Corros. Sci., 2011, 53, p 2351-2356.

    Article  CAS  Google Scholar 

  42. C.J. Li, G.J. Yang, and C.X. Li, Development of Particle Interface Bonding in Thermal Spray Coatings: A Review, J. Therm. Spray Technol., 2013, 22, p 192-206.

    Article  CAS  Google Scholar 

  43. J.J. Tian, S.W. Yao, X.T. Luo, C.X. Li, and C.J. Li, An Effective Approach for Creating Metallurgical Self-Bonding in Plasma-Spraying of NiCr-Mo Coating by Designing Shell-Corestructured Powders, Acta Mater., 2016, 110, p 19-30.

    Article  CAS  Google Scholar 

  44. X.J. Liao, L. Zhang, X.Y. Dong, X. Chen, and C.J. Li, Self-Bonding Effect Development for Plasma Spraying of Stainless Steel Coating Through using Mo-Clad Stainless Steel Powders, JOM-US, 2020, 72(12), p 4613-4623.

    Article  CAS  Google Scholar 

  45. H.P. Brantner, R. Pippan, and W. Prantl, Local and Global Fracture Toughness of A Flame Sprayed Molybdenum Coating, J. Therm. Spray Technol., 2003, 12, p 560-571.

    Article  CAS  Google Scholar 

  46. J.J. Xu, J.J. Kang, W. Yue, Z.Q. Fu, L.N. Zhu, and D.S. She, High-Temperature Tribological Property of Fe-Based Amorphous Alloy Coating, J. Non-cryst. Solids, 2021, 573, p 121136.

    Article  CAS  Google Scholar 

  47. S.H. Yoon, J.H. Kim, B.D. Kim, and C.H. Lee, Tribological Behavior of B4C Reinforced Fe-Based Bulk Metallic Glass Composite Coating, Surf. Coat. Technol., 2010, 205, p 1962-1968.

    Article  CAS  Google Scholar 

  48. H. Zhang, Y. Xie, L. Huang, S. Huang, X. Zheng, and G. Chen, Effect of Feedstock Particle Sizes on Wear Resistance of Plasma Sprayed Fe-Based Amorphous Coatings, Surf. Coat. Technol., 2014, 258, p 495-502.

    Article  CAS  Google Scholar 

  49. K.H. Zum Gahr, Microstructure and Wear of Materials (Chapter 6 Sliding Wear), Elsevier, Amsterdam, 1987, p 351-495

    Google Scholar 

  50. D.L.A. de Faria, S.V. Silva, and M.D. de Oliveira, Raman Microspectroscopy of Some Iron Oxides and Oxyhydroxides, J. Raman Spectrosc., 1997, 28, p 873-878.

    Article  Google Scholar 

  51. F. Bayata and A.T. Alpas, The High Temperature Wear Mechanisms of Iron-Nickel Steel (NCF 3015) and Nickel Based Superalloy (Inconel 751) Engine Valves, Wear, 2021, 13, p 203943.

    Article  Google Scholar 

  52. R. Rybiak, S. Fouvry, and B. Bonnet, Fretting Wear of Stainless Steels under Variable Temperature Conditions: Introduction of A “Composite” Wear Law, Wear, 2010, 268, p 413-423.

    Article  CAS  Google Scholar 

  53. K. Hiratsuka and K. Muramoto, Role of Wear Particles in Severe-Mild Wear Transition, Wear, 2005, 259, p 467-476.

    Article  CAS  Google Scholar 

  54. S.R. Pearson, J.O. Abere, and R.A.A. Hewitt, The Effect of Temperature on Wear and Friction of A High Strength Steel in Fretting, Wear, 2013, 15(1-2), p 622-631.

    Article  Google Scholar 

  55. T.F.J. Quinn, Role of Oxidation in the Mild Wear of Steel, Br. J. Appl. Phys., 2002, 13(1), p 33-37.

    Article  Google Scholar 

  56. F.H. Stott and G.C. Wood, The Influence of Oxides on the Friction and Wear of Alloys, Tribol. Int., 1978, 11(4), p 211-218.

    Article  CAS  Google Scholar 

  57. P. Jiang, X.L. Fan, Y.L. Sun, D.J. Li, B. Li, and T.J. Wang, Competition Mechanism of Interfacial Cracks in Thermal Barrier Coating System, Mater. Design, 2017, 132, p 559-566.

    Article  Google Scholar 

  58. J. Kong, D.S. Xiong, J.L. Li, Q.X. Yuan, and R. Tyagi, Effect of Flash Temperature on Tribological Properties of Bulk Metallic Glasses, Tribol. Lett., 2009, 35, p 151-158.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (Grant No. 52130509), Natural Science Foundation of China (Grant No. 52075542), National Natural Science Foundation of China (Grant No. 52005388), China Postdoctoral Science Foundation (Grant No. 2019M653598) and Natural Science Foundation of Shaanxi Province (Grant No. 2019TD-020 and No. 2019JQ-586).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Bai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Li, T.H., Liu, N. et al. Microstructure and Tribological Behavior of Supersonic Atmospheric Plasma-Sprayed Mo-/Fe-Based Amorphous Coating. J Therm Spray Tech 31, 2370–2384 (2022). https://doi.org/10.1007/s11666-022-01460-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01460-7

Keywords

Navigation