Skip to main content
Log in

Production of limonene from waste tires via catalytic fast pyrolysis: a statistical–based screening on Ni-, Pd-, Co-, and Fe-supported catalysts

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The use of waste tires for producing valuable chemicals via fast pyrolysis necessarily involves the understanding and synthesis of catalysts. Therefore, here, a statistical-based screening of SiO2-supported metal catalysts (Ni, Pd, Co, and Fe) to produce limonene from waste tire pyrolysis (WTP) is presented. The response surface method (RSM) was integrated into a principal component analysis (PCA) to identify the catalyst and reaction conditions that maximize the limonene yields for the experiments performed in an analytical pyrolyzer. The experiments were performed in an analytical pyrolysis unit coupled to a mass spectrometer (Py-GC/MS) using the temperature, the tire-to-catalyst ratio, and the type of catalyst as independent variables. The samples were grouped using PCA into 4 clusters according to the studied experimental conditions. The RSM model demonstrates that Co/SiO2 generates the most positive influence on the selectivity towards limonene under the following operating conditions: 370 °C and a tire-to-catalyst ratio of 1:5. Furthermore, it is possible to maintain a high selectivity to limonene and reduce the optimal catalyst load by slightly increasing the reaction temperature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are included in this published article and its supplementary information files. Those data not included are available from the corresponding author on reasonable request.

References

  1. Martínez JD (2021) An overview of the end-of-life tires status in some Latin American countries: proposing pyrolysis for a circular economy. Renew Sustain Energy Rev 144:111032. https://doi.org/10.1016/j.rser.2021.111032

    Article  Google Scholar 

  2. Williams PT (2013) Pyrolysis of waste tyres: a review. Waste Manag 33:1714–1728. https://doi.org/10.1016/j.wasman.2013.05.003

    Article  Google Scholar 

  3. Zhang G, Chen F, Zhang Y et al (2021) Properties and utilization of waste tire pyrolysis oil: a mini review. Fuel Process Technol 211:106582. https://doi.org/10.1016/j.fuproc.2020.106582

    Article  Google Scholar 

  4. Arabiourrutia M, Lopez G, Artetxe M et al (2020) Waste tyre valorization by catalytic pyrolysis – a review. Renew Sustain Energy Rev 129:109932. https://doi.org/10.1016/j.rser.2020.109932

    Article  Google Scholar 

  5. Menares T, Herrera J, Romero R et al (2020) Waste tires pyrolysis kinetics and reaction mechanisms explained by TGA and Py-GC/MS under kinetically-controlled regime. Waste Manag 102:21–29. https://doi.org/10.1016/J.WASMAN.2019.10.027

    Article  Google Scholar 

  6. Williams PT, Besler S, Taylor DT (1990) The pyrolysis of scrap automotive tyres. The influence of temperature and heating rate on product composition. Fuel 69:1474–1482. https://doi.org/10.1016/0016-2361(90)90193-T

    Article  Google Scholar 

  7. Chen R, Lun L, Cong K et al (2019) Insights into pyrolysis and co-pyrolysis of tobacco stalk and scrap tire: thermochemical behaviors, kinetics, and evolved gas analysis. Energy 183:25–34. https://doi.org/10.1016/j.energy.2019.06.127

    Article  Google Scholar 

  8. Czajczyńska D, Krzyżyńska R, Jouhara H, Spencer N (2017) Use of pyrolytic gas from waste tire as a fuel: a review. Energy 134:1121–1131. https://doi.org/10.1016/j.energy.2017.05.042

    Article  Google Scholar 

  9. Lewandowski WM, Januszewicz K, Kosakowski W (2019) Efficiency and proportions of waste tyre pyrolysis products depending on the reactor type—a review. J Anal Appl Pyrolysis 140:25–53. https://doi.org/10.1016/j.jaap.2019.03.018

    Article  Google Scholar 

  10. Ding K, Zhong Z, Zhang B et al (2015) Pyrolysis characteristics of waste tire in an analytical pyrolyzer coupled with gas chromatography/mass spectrometry. Energy Fuels 29:3181–3187. https://doi.org/10.1021/acs.energyfuels.5b00247

    Article  Google Scholar 

  11. Zhang X, Wang T, Ma L, Chang J (2008) Vacuum pyrolysis of waste tires with basic additives. Waste Manag 28:2301–2310. https://doi.org/10.1016/J.WASMAN.2007.10.009

    Article  Google Scholar 

  12. Xu F, Wang B, Yang D et al (2018) TG-FTIR and Py-GC/MS study on pyrolysis mechanism and products distribution of waste bicycle tire. Energy Convers Manag 175:288–297. https://doi.org/10.1016/j.enconman.2018.09.013

    Article  Google Scholar 

  13. Osorio-Vargas P, Menares T, Lick D et al (2020) Tuning the product distribution during the catalytic pyrolysis of waste tires: the effect of the nature of metals and the reaction temperature. Catal Today. https://doi.org/10.1016/j.cattod.2020.10.035

    Article  Google Scholar 

  14. Dong C, Zhang Z, Lu Q, Yang Y (2012) Characteristics and mechanism study of analytical fast pyrolysis of poplar wood. Energy Convers Manag 57:49–59. https://doi.org/10.1016/J.ENCONMAN.2011.12.012

    Article  Google Scholar 

  15. Liaw S-S, Haber Perez V, Zhou S et al (2014) Py-GC/MS studies and principal component analysis to evaluate the impact of feedstock and temperature on the distribution of products during fast pyrolysis. J Anal Appl Pyrolysis 109:140–151. https://doi.org/10.1016/J.JAAP.2014.06.018

    Article  Google Scholar 

  16. Ma S, Leong H, He L et al (2020) Effects of pressure and residence time on limonene production in waste tires pyrolysis process. J Anal Appl Pyrolysis 151:104899. https://doi.org/10.1016/j.jaap.2020.104899

    Article  Google Scholar 

  17. Busca G (2014) Metal catalysts for hydrogenations and dehydrogenations. In: Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour, 1st edn. Elsevier B.V., pp 297–343

  18. Corma Canos A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502. https://doi.org/10.1021/cr050989d

    Article  Google Scholar 

  19. Mohammed IY, Abakr YA, Yusup S, Kazi FK (2017) Valorization of Napier grass via intermediate pyrolysis: optimization using response surface methodology and pyrolysis products characterization. J Clean Prod 142:1848–1866. https://doi.org/10.1016/J.JCLEPRO.2016.11.099

    Article  Google Scholar 

  20. Idris R, Chong CT, Asik JA, Ani FN (2020) Optimization studies of microwave-induced co-pyrolysis of empty fruit bunches/waste truck tire using response surface methodology. J Clean Prod 244:118649. https://doi.org/10.1016/J.JCLEPRO.2019.118649

    Article  Google Scholar 

  21. Mkhize NM, van der Gryp P, Danon B, Görgens JF (2016) Effect of temperature and heating rate on limonene production from waste tyre pyrolysis. J Anal Appl Pyrolysis 120:314–320. https://doi.org/10.1016/J.JAAP.2016.04.019

    Article  Google Scholar 

  22. Joaquín AR (2017) Análisis de Componentes Principales (Principal Component Analysis, PCA) y t-SNE. https://rpubs.com/Cristina_Gil/PCA. Accessed 10/09/2022

  23. Khare P, Baruah BP, Rao PG (2011) Application of chemometrics to study the kinetics of coal pyrolysis: a novel approach. Fuel 90:3299–3305. https://doi.org/10.1016/J.FUEL.2011.05.017

    Article  Google Scholar 

  24. Alves A, Gierlinger N, Schwanninger M, Rodrigues J (2009) Analytical pyrolysis as a direct method to determine the lignin content in wood: part 3. Evaluation of species-specific and tissue-specific differences in softwood lignin composition using principal component analysis. J Anal Appl Pyrolysis 85:30–37. https://doi.org/10.1016/J.JAAP.2008.09.006

    Article  Google Scholar 

  25. Pattiya A, Titiloye JO, Bridgwater AV (2010) Evaluation of catalytic pyrolysis of cassava rhizome by principal component analysis. Fuel 89:244–253. https://doi.org/10.1016/J.FUEL.2009.07.003

    Article  Google Scholar 

  26. Aguado R, Elordi G, Arrizabalaga A et al (2014) Principal component analysis for kinetic scheme proposal in the thermal pyrolysis of waste HDPE plastics. Chem Eng J 254:357–364. https://doi.org/10.1016/J.CEJ.2014.05.131

    Article  Google Scholar 

  27. Burhenne L, Messmer J, Aicher T, Laborie M-P (2013) The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. J Anal Appl Pyrolysis 101:177–184. https://doi.org/10.1016/j.jaap.2013.01.012

    Article  Google Scholar 

  28. Han J, Yao X, Zhan Y et al (2017) A method for estimating higher heating value of biomass-plastic fuel. J Energy Inst 90:331–335. https://doi.org/10.1016/j.joei.2016.01.001

    Article  Google Scholar 

  29. Graulis S, Chateigner D, Downs RT et al (2009) Crystallography Open Database - an open-access collection of crystal structures. J Appl Crystallogr 42:726–729. https://doi.org/10.1107/S0021889809016690

    Article  Google Scholar 

  30. Shao J, Jiang H, Yang M et al (2022) Catalytic fast pyrolysis of cellulose over different metal-modified ZSM-5 zeolites for light olefins. J Anal Appl Pyrolysis 166:105628. https://doi.org/10.1016/j.jaap.2022.105628

    Article  Google Scholar 

  31. Osorio-Vargas P, Menares T, Lick ID et al (2021) Tuning the product distribution during the catalytic pyrolysis of waste tires: the effect of the nature of metals and the reaction temperature. Catal Today 372:164–174. https://doi.org/10.1016/j.cattod.2020.10.035

    Article  Google Scholar 

  32. Arabiourrutia M, Bensidhom G, Bolaños M et al (2022) Catalytic pyrolysis of date palm seeds on HZSM-5 and dolomite in a pyroprobe reactor in line with GC/MS. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-02493-2

    Article  Google Scholar 

  33. Riquelme AL, Valdés H (2016) Aplicación del diseño D-optimal en la modelación de la adsorción de COVs-Cl sobre zeolitas naturales chilenas modificadas. Ingeniare 24:542–557. https://doi.org/10.4067/s0718-33052016000400002

    Article  Google Scholar 

  34. Ballabio D, Consonni V (2013) Classification tools in chemistry. Part 1: linear models. PLS-DA. Anal Methods 5:3790–3798. https://doi.org/10.1039/c3ay40582f

    Article  Google Scholar 

  35. Vannice MA (2005) Kinetics of Catalytic Reactions. Springer US, Boston

    Book  Google Scholar 

  36. Busca G (2014) Metal Catalysts for hydrogenations and dehydrogenations. Heterog Catal Mater:297–343

  37. Guerrero C, Castellanos JF, Roger A, Courson C (2008) Síntesis sol-gel de catalizadores de hierro soportados sobre sílice y titania para la oxidación selectiva de metano hasta formaldehído Sol-gel synthesis of iron catalysers supported on silica and titanium for selectively oxidising methane to formaldehyde. Ing Investig 28:72–80

    Article  Google Scholar 

  38. Chen R, Xu X, Lu S et al (2018) Pyrolysis study of waste phenolic fibre-reinforced plastic by thermogravimetry/fourier transform infrared/mass spectrometry analysis. Energy Convers Manag 165:555–566. https://doi.org/10.1016/j.enconman.2018.03.092

    Article  Google Scholar 

  39. Khe C, Aziz A, Lockman Z (2012) Synthesis of cobalt/gold bimetallic hollow microspheres and its synthesis of cobalt/gold bimetallic particles with porous flake-like nanostructures and their magnetic properties. Nanosci Nanotechnol Lett 4:1–6. https://doi.org/10.1166/nnl.2012.1390

    Article  Google Scholar 

  40. Moradi GR, Basir MM, Taeb A, Kiennemann A (2003) Promotion of Co = SiO 2 fischer – tropsch catalysts with zirconium. Catal Commun 4:27–32

    Article  Google Scholar 

  41. Botas JA, Melero JA, Martínez F, Pariente MI (2010) Assessment of Fe2O3/SiO2 catalysts for the continuous treatment of phenol aqueous solutions in a fixed bed reactor. Catal Today 149:334–340. https://doi.org/10.1016/j.cattod.2009.06.014

    Article  Google Scholar 

  42. Dorofeev GA, Lubnin AN, Ulyanov AL et al (2015) XRD characterization of mechanically alloyed high-nitrogen nanocrystalline Fe–Cr system. Mater Lett 159:493–497. https://doi.org/10.1016/J.MATLET.2015.08.050

    Article  Google Scholar 

  43. Wojcieszak R, Zieliński M, Monteverdi S, Bettahar MM (2006) Study of nickel nanoparticles supported on activated carbon prepared by aqueous hydrazine reduction. J Colloid Interface Sci 299:238–248. https://doi.org/10.1016/j.jcis.2006.01.067

    Article  Google Scholar 

  44. Matsukata M, Matsushita T, Ueyama K (1996) A novel hydrogen/syngas production process: catalytic activity and stability of NiSiO2. Chem Eng Sci 51:2769–2774. https://doi.org/10.1016/0009-2509(96)00150-9

    Article  Google Scholar 

  45. Id ALB, Polyakov VA, Id AAT, Isaeva AN (2018) Chemical synthesis and characterization of Pd / SiO 2 . Metals (Basel):1–12. https://doi.org/10.3390/met8020135

  46. Ma M, Jian Y, Chen C, He C (2018) Spherical-like Pd/SiO 2 catalysts for n-butylamine efficient combustion: effect of support property and preparation method. Catal Today. https://doi.org/10.1016/j.cattod.2018.11.024

    Article  Google Scholar 

  47. Bardestani R, Patience GS, Kaliaguine S (2019) Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can J Chem Eng 97:2781–2791. https://doi.org/10.1002/cjce.23632

    Article  Google Scholar 

  48. Cheung K-Y, Lee K-L, Lam K-L et al (2011) Integrated kinetics and heat flow modelling to optimise waste tyre pyrolysis at different heating rates. Fuel Process Technol 92:856–863. https://doi.org/10.1016/J.FUPROC.2010.11.028

    Article  Google Scholar 

  49. Danon B, Mkhize NM, Van Der Gryp P, Görgens JF (2015) Combined model-free and model-based devolatilisation kinetics of tyre rubbers. Thermochim Acta 601:45–53. https://doi.org/10.1016/j.tca.2014.12.003

    Article  Google Scholar 

  50. Singh S, Nimmo W, Gibbs BM, Williams PT (2009) Waste tyre rubber as a secondary fuel for power plants. Fuel 88:2473–2480. https://doi.org/10.1016/j.fuel.2009.02.026

    Article  Google Scholar 

  51. Miguel GS, Aguado J, Serrano DP, Escola JM (2006) Thermal and catalytic conversion of used tyre rubber and its polymeric constituents using Py-GC/MS. Appl Catal B Environ 64:209–219. https://doi.org/10.1016/j.apcatb.2005.12.004

    Article  Google Scholar 

  52. Osorio-Vargas P, Lick ID, Sobrevía F et al (2021) Thermal behavior, reaction pathways and kinetic implications of using a Ni/SiO2 Catalyst for waste tire pyrolysis. Waste Biomass Valorization. https://doi.org/10.1007/s12649-021-01494-y

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the ANID-Chile under Grants ACE210012, Fondecyt Initiation 11170302, and project ANID/FONDAP/15130015.

Funding

This work was supported by the ANID-Chile under Grants ACE210012, Fondecyt Initiation 11170302, and project ANID/FONDAP/15130015.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Romina Romero and Luis E. Arteaga-Pérez; methodology: Romina Romero and Tamara Menares; formal analysis and investigation: Felipe Sobrevía, Paula Osorio, and Tamara Menares; writing—original draft preparation: Tamara Menares and Romina Romero; writing—review and editing: Luis E. Arteaga-Perez, Frederik Ronsse, Paula Osorio, and Yannay Casas.

Corresponding author

Correspondence to Luis E. Arteaga-Pérez.

Ethics declarations

Ethics approval

The authors declare that the manuscript and the results within it were obtained under the rules of good scientific practices. The work did not include work with humans, and we declare no conflict of interest.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 355 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menares, T., Romero, R., Sobrevía, F. et al. Production of limonene from waste tires via catalytic fast pyrolysis: a statistical–based screening on Ni-, Pd-, Co-, and Fe-supported catalysts. Biomass Conv. Bioref. 13, 11259–11274 (2023). https://doi.org/10.1007/s13399-022-03277-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03277-4

Keywords

Navigation