Skip to main content
Log in

Spatial mode compensation technique using progressive phase conjugation

  • Special Section: Regular Paper
  • International Symposium on Imaging, Sensing, and Optical Memory (ISOM' 21), Kobe, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We propose a spatial mode compensation method using progressive phase conjugation (PPC) to establish a dynamic control technology for mode distribution in multi-mode fiber (MMF). PPC is a phase conjugate generation technology that can be far away from the signal source and does not require an additional reference beam. We confirm the basic operation of the proposed scheme by considering the coupling efficiency between the compensated spatial mode component and incident mode. We quantitatively evaluate the mode recovery from the mixed state of LP11, LP22, LP02, and LP31 to LP01, the fundamental mode. Using a random optical diffuser to uniformly scatter the intensity distribution of the signal beam, high compensation performance can be obtained because the influence of the mode intensity distribution is reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9

Similar content being viewed by others

References

  1. Richardson, D.J.: Filling the light pipe. Science 330(6002), 327–328 (2010). https://doi.org/10.1126/science.1191708

    Article  ADS  Google Scholar 

  2. Essiambre, R., Kramer, G., Winzer, P.J., Foschini, G.J., Goebel, B.: Capacity limits of optical fiber networks. J. Lightwave Technol. 28(4), 662–701 (2010). https://doi.org/10.1109/JLT.2009.2039464

    Article  ADS  Google Scholar 

  3. Essiambre, R.J., Tkach, R.W.: Capacity trends and limits of optical communication networks. Proc. IEEE 100(5), 1035–1055 (2012). https://doi.org/10.1109/JPROC.2012.2182970

    Article  Google Scholar 

  4. P Sillard M Bigot-Astruc D Boivin H Maerten L Provost 2011 Few-mode fiber for uncoupled mode-division multiplexing transmissions, in 37th European Conference and Exposition and Optical Communications https://doi.org/10.1364/ecoc.2011.tu.5.lecervin.7

  5. Sillard, P., Molin, D., Bigot-Astruc, M., Amezcua-Correa, A., De Jongh, K., Achten, F.: 50μm multimode fibers for mode division multiplexing. Eur. Conf. Opt. Commun. (2015). https://doi.org/10.1109/ECOC.2015.7341642

    Article  Google Scholar 

  6. Soma, D., et al.: 10.16-Peta-B/s dense SDM/WDM transmission over 6-mode 19-core Fiber across the C+L band. J. Lightwave Technol. 36(6), 1362–1368 (2018). https://doi.org/10.1109/JLT.2018.2799380

    Article  Google Scholar 

  7. Beppu, S., et al.: 402.7-Tb/s MDM-WDM Transmission over weakly coupled 10-mode fiber using rate-adaptive PS-16QAM signals. J. Lightwave Technol. 38(10), 2834–2840 (2020). https://doi.org/10.1109/JLT.2020.2979195

    Article  ADS  Google Scholar 

  8. Soma, D., et al.: 257-Tbit/s weakly coupled 10-mode C + L-band WDM transmission. J. Lightwave Technol. 36(6), 1375–1381 (2018). https://doi.org/10.1109/JLT.2018.2792484

    Article  ADS  Google Scholar 

  9. Hayashi, T., et al.: Six-mode 19-core fiber with 114 spatial modes for weakly-coupled mode-division-multiplexed transmission. J. Lightwave Technol. 35(4), 748–754 (2017). https://doi.org/10.1109/JLT.2016.2617894

    Article  ADS  Google Scholar 

  10. Wang, A., Zhu, L., Wang, L., Ai, J., Chen, S., Wang, J.: Directly using 88-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission. Opt. Express 26(8), 10038–10047 (2018). https://doi.org/10.1364/OE.26.010038

    Article  ADS  Google Scholar 

  11. Hadi, M.U., Nanni, J., Venard, O., Baudoin, G., Polleux, J.L., Tartarini, G.: Practically feasible closed-loop digital predistortion for VCSEL-MMF-based radio-over-fiber links. Radioengineering 29(1), 37–43 (2020). https://doi.org/10.13164/re.2020.0037

    Article  Google Scholar 

  12. Panicker, R.A., Lau, A.P.T., Wilde, J.P., Kahn, J.M.: Experimental comparison of adaptive optics algorithms in 10-Gb/s multimode fiber systems. J. Lightwave Technol. 27(24), 5783–5789 (2009). https://doi.org/10.1109/JLT.2009.2036683

    Article  ADS  Google Scholar 

  13. Shemirani, M.B., Wilde, J.P., Kahn, J.M.: Adaptive compensation of multimode fiber dispersion by control of launched amplitude, phase, and polarization. J. Lightwave Technol. 28(18), 2627–2639 (2010). https://doi.org/10.1109/JLT.2010.2058092

    Article  ADS  Google Scholar 

  14. Sheffi, N., Sadot, D.: Energy-efficient VCSEL Array using power and offset allocation of spatial multiplexing in graded-index multimode fiber. J. Lightwave Technol. 35(11), 2098–2108 (2017). https://doi.org/10.1109/JLT.2017.2656238

    Article  ADS  Google Scholar 

  15. Zel’dovich, B.Y., Popovichev, V.I., Ragul’skii, V.V., Faizullov, F.S.: Connection between the wave fronts of the reflected and exciting light in stimulated Mandel’ Shtam Brillouin scatterin landmark papers on photorefractive nonlinear optics. World Scientific, Singapore (1995). https://doi.org/10.1142/9789812832047_0033

    Book  Google Scholar 

  16. Benyahya, K., et al.: Multiterabit transmission over OM2 multimode Fiber with wavelength and mode group multiplexing and direct detection. J. Lightwave Technol. 36(2), 355–360 (2018). https://doi.org/10.1109/JLT.2017.2779825

    Article  ADS  Google Scholar 

  17. Feng, F., et al.: All-optical mode-group division multiplexing over a graded-index ring-core fiber with single radial mode OFC OSA Digest, paper W3D 5. Opt. Fiber Commun. Conf Exhib (2016). https://doi.org/10.1364/ofc.2016.w3d.5

    Article  Google Scholar 

  18. Okamoto, A., Kunori, K., Takabayashi, M., Tomita, A., Sato, K.: Holographic diversity interferometry for optical storage. Opt. Express 19(14), 13436–13444 (2011). https://doi.org/10.1364/OE.19.013436

    Article  ADS  Google Scholar 

  19. Goto, Y., et al.: Reference-free holographic diversity interferometry via iterative measurements for high accuracy phase detection. Opt. Express 24(21), 24739 (2016). https://doi.org/10.1364/OE.24.024739

    Article  ADS  Google Scholar 

  20. Suhara, T.: Integrated optics comprehensive microsystems. Elsevier, Amsterdam (2008). https://doi.org/10.1016/B978-044452190-3.00029-X

    Book  Google Scholar 

  21. Oe, K., Nomura, T.: Twin-image reduction method using a diffuser for phase imaging in-line digital holography. Appl. Opt. 57, 5652–5656 (2018). https://doi.org/10.1364/AO.57.005652

    Article  ADS  Google Scholar 

  22. Lin, W., Chen, L., Zhou, S., Yeh, T., Su, W.: Electrically tunable diffuser for holographic multiplexing storage. Opt. Eng. 60(7), 075105 (2021). https://doi.org/10.1117/1.OE.60.7.075105

    Article  ADS  Google Scholar 

  23. Zhang, S., et al.: Spatial mode exchange technique using volume holograms with a random optical diffuser for reduction of crosstalk. Opt. Rev. 28(2), 181–189 (2021). https://doi.org/10.1007/s10043-021-00648-6

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JST SPRING (grant number JPMJSP2119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeyu Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Okamoto, A., Zhang, S. et al. Spatial mode compensation technique using progressive phase conjugation. Opt Rev 29, 440–449 (2022). https://doi.org/10.1007/s10043-022-00758-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-022-00758-9

Keywords

Navigation