Skip to main content

Advertisement

Log in

Bio-hydrogen production through dark fermentation: an overview

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Recently, hydrogen gas is becoming the most prominent alternative fuel due to its clean and environment-friendly nature. It only delivers water as a waste product during the operation instead of emitting harmful greenhouse gases. It has a high heating value (142 MJ/kg), over 2.75 times that of other hydrocarbon-based petroleum fuels. Presently, the primary method of producing hydrogen is the steam reforming of fossil fuels, which is not economical and environmentally harmful, and fossil fuels are on the deadline to finish. Hence, alternative methods of hydrogen production are the topic of current research. Biological methods of hydrogen production were found the best for producing green hydrogen because they utilize plentiful available renewable sources as feedstock. The dark fermentation technique is becoming more famous among all biological hydrogen generation methods because of its light autonomous nature and functional ability. It has the facility to convert any type of carbohydrate-rich organic substrates into bio-hydrogen, but pure carbohydrate substances are not economical on a commercial scale. Hence, carbohydrate-rich organic waste can be easily harnessed for bio-hydrogen generation. This method yields hydrogen gas and different high-volatility fatty acids, which could be used for industrial purposes after separation or as a precursor for the bio-methanation process for biogas production. This paper defines mechanism, microbiology, affecting factors, various integration methodologies, and potential and limitations related to the dark fermentation method.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sinha P, Pandey A (2011) An evaluative report and challenges for fermentative biohydrogen production. Int J Hydrogen Energy 36:7460–7478. https://doi.org/10.1016/j.ijhydene.2011.03.077

    Article  Google Scholar 

  2. Cardoso V, Romao BB, Silva FTM, Santos JG, Batista FRX, Ferreira JS (2014) Hydrogen production by dark fermentation. Chem Engi Trans 38:481–486. https://doi.org/10.3303/CET1438081

    Article  Google Scholar 

  3. Dahiya S, Chatterjee S, Sarkar O, Mohan SV (2020) Renewable hydrogen production by dark-fermentation: current status, challenges and perspectives. Bioresour Technol:124354. https://doi.org/10.1016/j.biortech.2020.124354

  4. Collet C, Adler N, Schwitzguébel JP, Péringer P (2004) Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. Int J Hydrogen Energy 29:1479–1485. https://doi.org/10.1016/j.ijhydene.2004.02.009

    Article  Google Scholar 

  5. Kothari R, Singh DP, Tyagi VV, Tyagi SK (2012) Fermentative hydrogen production – an alternative clean energy source. Renew Sustain Energy Rev 16:2337–2346. https://doi.org/10.1016/j.rser.2012.01.002

    Article  Google Scholar 

  6. Singh H, Das D (2018) Biofuels from microalgae: biohydrogen. Green Energy Technol 0:201–228. https://doi.org/10.1007/978-3-319-69093-3_10

    Article  Google Scholar 

  7. Balachandar G, Varanasi JL, Singh V et al (2020) Biological hydrogen production via dark fermentation: a holistic approach from lab-scale to pilot-scale. Int J Hydrogen Energy 45:5202–5215. https://doi.org/10.1016/j.ijhydene.2019.09.006

    Article  Google Scholar 

  8. Perera KRJ, Ketheesan B, Gadhamshetty V, Nirmalakhandan N (2010) Fermentative biohydrogen production: evaluation of net energy gain. Int J Hydrogen Energy 35:12224–12233. https://doi.org/10.1016/j.ijhydene.2010.08.037

    Article  Google Scholar 

  9. oledo-Alarcón J et al (2018) Basics of bio-hydrogen production by dark fermentation. In: Liao Q, Chang Js, Herrmann C, Xia A (eds) Bioreactors for microbial biomass and energy conversion. Green energy and technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7677-0_6

  10. Shin H, Youn J (2005) Conversion of food waste into hydrogen by thermophilic acidogenesis. Biodegradation 16(1):33–44. https://doi.org/10.1007/s10531-004-0377-9

    Article  Google Scholar 

  11. Sarkar O, Mohan SV (2016) Deciphering acidogenic process towards biohydrogen, biohythane, and short chain fatty acids production: multi-output optimization strategy. Biofuel Res J 3:458–469. https://doi.org/10.18331/BRJ2016.3.3.5

    Article  Google Scholar 

  12. Venetsaneas N, Antonopoulou G, Stamatelatou K, Kornaros M (2009) Bioresource technology using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour Technol 100:3713–3717. https://doi.org/10.1016/j.biortech.2009.01.025

    Article  Google Scholar 

  13. Liu D, Liu D, Zeng RJ, Angelidaki I (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res 40:2230–2236. https://doi.org/10.1016/j.watres.2006.03.029

    Article  Google Scholar 

  14. Liu Z, Zhang C, Lu Y et al (2013) Bioresource technology states and challenges for high-value biohythane production from waste biomass by dark fermentation technology. Bioresour Technol 135:292–303. https://doi.org/10.1016/j.biortech.2012.10.027

    Article  Google Scholar 

  15. Ghimire A, Frunzo L, Pirozzi F et al (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95. https://doi.org/10.1016/j.apenergy.2015.01.045

    Article  Google Scholar 

  16. Taifor AF, Zakaria MR, Mohd Yusoff MZ et al (2017) Elucidating substrate utilization in biohydrogen production from palm oil mill effluent by Escherichia coli. Int J Hydrogen Energy 42:5812–5819. https://doi.org/10.1016/j.ijhydene.2016.11.188

    Article  Google Scholar 

  17. Pandit S, Balachandar G, Das D (2014) Improved energy recovery from dark fermented cane molasses using microbial fuel cells. Front Chem Sci Eng 8:43–54. https://doi.org/10.1007/s11705-014-1403-4

    Article  Google Scholar 

  18. Castillo-Hernández A, Mar-Alvarez I, Moreno-Andrade I (2015) Start-up and operation of continuous stirred-tank reactor for biohydrogen production from restaurant organic solid waste. Int J Hydrogen Energy 40:17239–17245. https://doi.org/10.1016/j.ijhydene.2015.04.046

    Article  Google Scholar 

  19. Ren N, Guo W, Liu B et al (2011) Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production. Curr Opin Biotechnol 22:365–370. https://doi.org/10.1016/j.copbio.2011.04.022

    Article  Google Scholar 

  20. Guo XM, Trably E, Latrille E et al (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrogen Energy 35:10660–10673. https://doi.org/10.1016/j.ijhydene.2010.03.008

    Article  Google Scholar 

  21. Venkata Mohan S, Nikhil GN, Chiranjeevi P et al (2016) Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresour Technol 215:2–12. https://doi.org/10.1016/j.biortech.2016.03.130

    Article  Google Scholar 

  22. Antonopoulou G, Stamatelatou K, Venetsaneas N et al (2008) Biohydrogen and methane production from cheese whey in a two-stage anaerobic process. Ind Eng Chem Res 47:5227–5233. https://doi.org/10.1021/ie071622x

    Article  Google Scholar 

  23. Antonopoulou G, Gavala HN, Skiadas IV et al (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99:110–119. https://doi.org/10.1016/j.biortech.2006.11.048

    Article  Google Scholar 

  24. Akutsu Y, Li Y-Y, Tandukar M et al (2008) Effects of seed sludge on fermentative characteristics and microbial community structures in thermophilic hydrogen fermentation of starch. Int J Hydrogen Energy 33:6541–6548. https://doi.org/10.1016/j.ijhydene.2008.08.038

    Article  Google Scholar 

  25. Chen W-H, Chen S-Y, Kumar Khanal S, Sung S (2006) Kinetic study of biological hydrogen production by anaerobic fermentation. Int J Hydrogen Energy 31:2170–2178. https://doi.org/10.1016/j.ijhydene.2006.02.020

    Article  Google Scholar 

  26. Noike T, Takabatake H, Mizuno O, Ohba M (2002) Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int J Hydrogen Energy 27:1367–1371. https://doi.org/10.1016/S0360-3199(02)00120-9

    Article  Google Scholar 

  27. Rai PK, Singh SP (2016) Integrated dark- and photo-fermentation: recent advances and provisions for improvement. Int J Hydrogen Energy 41:19957–19971. https://doi.org/10.1016/j.ijhydene.2016.08.084

    Article  Google Scholar 

  28. Venkata Mohan S, Hemalatha M, Chakraborty D et al (2020) Algal biorefinery models with self-sustainable closed loop approach: trends and prospective for blue-bioeconomy. Bioresour Technol 295:122128. https://doi.org/10.1016/j.biortech.2019.122128

    Article  Google Scholar 

  29. Kumar G, Shobana S, Nagarajan D et al (2018) ScienceDirect biomass based hydrogen production by dark fermentation — recent trends and opportunities for greener processes. Curr Opin Biotechnol 50:136–145. https://doi.org/10.1016/j.copbio.2017.12.024

    Article  Google Scholar 

  30. Wang A, Sun D, Cao G et al (2011) Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour Technol 102:4137–4143. https://doi.org/10.1016/j.biortech.2010.10.137

    Article  Google Scholar 

  31. Pasupuleti SB, Srikanth S, Venkata Mohan S, Pant D (2015) Continuous mode operation of microbial fuel cell (MFC) stack with dual gas diffusion cathode design for the treatment of dark fermentation effluent. Int J Hydrogen Energy 40:12424–12435. https://doi.org/10.1016/j.ijhydene.2015.07.049

    Article  Google Scholar 

  32. Liu C-H, Chang C-Y, Liao Q et al (2013) Biohydrogen production by a novel integration of dark fermentation and mixotrophic microalgae cultivation. Int J Hydrogen Energy 38:15807–15814. https://doi.org/10.1016/j.ijhydene.2013.05.104

    Article  Google Scholar 

  33. Bastidas-Oyanedel JR, Bonk F, Thomsen MH, Schmidt JE (2015) Dark fermentation biorefinery in the present and future (bio)chemical industry. Rev Environ Sci Biotechnol 14:473–498. https://doi.org/10.1007/s11157-015-9369-3

    Article  Google Scholar 

  34. Kumar G, Bakonyi P, Kobayashi T et al (2016) Enhancement of biofuel production via microbial augmentation: the case of dark fermentative hydrogen. Renew Sustain Energy Rev 57:879–891. https://doi.org/10.1016/j.rser.2015.12.107

    Article  Google Scholar 

  35. Marone A, Ayala-Campos OR, Trably E et al (2017) Coupling dark fermentation and microbial electrolysis to enhance bio-hydrogen production from agro-industrial wastewaters and by-products in a bio-refinery framework. Int J Hydrogen Energy 42:1609–1621. https://doi.org/10.1016/j.ijhydene.2016.09.166

    Article  Google Scholar 

  36. Moreno R, Escapa A, Cara J et al (2015) A two-stage process for hydrogen production from cheese whey: integration of dark fermentation and biocatalyzed electrolysis. Int J Hydrogen Energy 40:168–175. https://doi.org/10.1016/j.ijhydene.2014.10.120

    Article  Google Scholar 

  37. Dhar BR, Elbeshbishy E, Hafez H, Lee H-S (2015) Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell. Bioresour Technol 198:223–230. https://doi.org/10.1016/j.biortech.2015.08.048

    Article  Google Scholar 

  38. Li X-H, Liang D-W, Bai Y-X et al (2014) Enhanced H2 production from corn stalk by integrating dark fermentation and single chamber microbial electrolysis cells with double anode arrangement. Int J Hydrogen Energy 39:8977–8982. https://doi.org/10.1016/j.ijhydene.2014.03.065

    Article  Google Scholar 

  39. Nath K, Muthukumar M, Kumar A, Das D (2008) Kinetics of two-stage fermentation process for the production of hydrogen. Int J Hydrogen Energy 33:1195–1203. https://doi.org/10.1016/j.ijhydene.2007.12.011

    Article  Google Scholar 

  40. Sawatdeenarunat C, Nguyen D, Surendra KC et al (2016) Anaerobic biorefinery: current status, challenges, and opportunities. Bioresour Technol 215:304–313. https://doi.org/10.1016/j.biortech.2016.03.074

    Article  Google Scholar 

  41. Luo G, Xie L, Zhou Q, Angelidaki I (2011) Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process. Bioresour Technol 102:8700–8706. https://doi.org/10.1016/j.biortech.2011.02.012

    Article  Google Scholar 

  42. Chu C-F, Li Y-Y, Xu K-Q et al (2008) A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste. Int J Hydrogen Energy 33:4739–4746. https://doi.org/10.1016/j.ijhydene.2008.06.060

    Article  Google Scholar 

  43. Li W-W, Yu H-Q (2011) From wastewater to bioenergy and biochemicals via two-stage bioconversion processes: a future paradigm. Biotechnol Adv 29:972–982. https://doi.org/10.1016/j.biotechadv.2011.08.012

    Article  Google Scholar 

  44. Kongjan P, O-Thong S, Angelidaki I (2011) Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors. Bioresour Technol 102:4028–4035. https://doi.org/10.1016/j.biortech.2010.12.009

    Article  Google Scholar 

  45. Turon V, Trably E, Fouilland E, Steyer J-P (2016) Potentialities of dark fermentation effluents as substrates for microalgae growth: a review. Process Biochem 51:1843–1854. https://doi.org/10.1016/j.procbio.2016.03.018

    Article  Google Scholar 

  46. Sarma SJ, Pachapur V, Brar SK et al (2015) Hydrogen biorefinery: potential utilization of the liquid waste from fermentative hydrogen production. Renew Sustain Energy Rev 50:942–951. https://doi.org/10.1016/j.rser.2015.04.191

    Article  Google Scholar 

  47. Xia A, Cheng J, Ding L et al (2015) Substrate consumption and hydrogen production via co-fermentation of monomers derived from carbohydrates and proteins in biomass wastes. Appl Energy 139:9–16. https://doi.org/10.1016/j.apenergy.2014.11.016

    Article  Google Scholar 

  48. Singhania RR, Patel AK, Christophe G et al (2013) Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation. Bioresour Technol 145:166–174. https://doi.org/10.1016/j.biortech.2012.12.137

    Article  Google Scholar 

  49. Lee WS, Chua ASM, Yeoh HK, Ngoh GC (2014) A review of the production and applications of waste-derived volatile fatty acids. Chem Eng J 235:83–99. https://doi.org/10.1016/j.cej.2013.09.002

    Article  Google Scholar 

  50. Sekoai PT, Ghimire A, Ezeokoli OT et al (2021) Valorization of volatile fatty acids from the dark fermentation waste streams—a promising pathway for a biorefinery concept. Renew Sustain Energy Rev 143:110971. https://doi.org/10.1016/j.rser.2021.110971

    Article  Google Scholar 

  51. Luo H, Zeng Y, Cheng Y et al (2020) Recent advances in municipal landfill leachate: a review focusing on its characteristics, treatment, and toxicity assessment. Sci Total Environ 703:135468. https://doi.org/10.1016/j.scitotenv.2019.135468

    Article  Google Scholar 

  52. Lu Y, Xu Y, Chen S et al (2020) Effect of nitrite addition on the two-phase anaerobic digestion of waste activated sludge: optimization of the acidogenic phase and influence mechanisms. Environ Pollut 261:114085. https://doi.org/10.1016/j.envpol.2020.114085

    Article  Google Scholar 

  53. Feng D, Xia A, Liao Q et al (2020) Carbon cloth facilitates semi-continuous anaerobic digestion of organic wastewater rich in volatile fatty acids from dark. Environ Pollut:116030. https://doi.org/10.1016/j.envpol.2020.116030

  54. Espinoza-Escalante FM, Pelayo-Ortíz C, Navarro-Corona J et al (2009) Anaerobic digestion of the vinasses from the fermentation of Agave tequilana Weber to tequila: the effect of pH, temperature and hydraulic retention time on the production of hydrogen and methane. Biomass Bioenergy 33:14–20. https://doi.org/10.1016/j.biombioe.2008.04.006

    Article  Google Scholar 

  55. Van GS, Sung S, Lay J-J (2001) Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol 35:4726–4730. https://doi.org/10.1021/es001979r

    Article  Google Scholar 

  56. Temudo MF, Kleerebezem R, van Loosdrecht M (2007) Influence of the pH on (open) mixed culture fermentation of glucose: a chemostat study. Biotechnol Bioeng 98:69–79. https://doi.org/10.1002/bit.21412

    Article  Google Scholar 

  57. Ye N-F, Lü F, Shao L-M et al (2007) Bacterial community dynamics and product distribution during pH-adjusted fermentation of vegetable wastes. J Appl Microbiol 103:1055–1065. https://doi.org/10.1111/j.1365-2672.2007.03321.x

    Article  Google Scholar 

  58. Zhang L, Loh K-C, Zhang J (2019) Enhanced biogas production from anaerobic digestion of solid organic wastes: current status and prospects. Bioresour Technol Rep 5:280–296. https://doi.org/10.1016/j.biteb.2018.07.005

    Article  Google Scholar 

  59. Dhanya BS, Mishra A, Chandel AK, Verma ML (2020) Development of sustainable approaches for converting the organic waste to bioenergy. Sci Total Environ 723:138109. https://doi.org/10.1016/j.scitotenv.2020.138109

    Article  Google Scholar 

  60. Doi T, Matsumoto H, Abe J, Morita S (2009) Feasibility study on the application of rhizosphere microflora of rice for the biohydrogen production from wasted bread. Int J Hydrogen Energy 34:1735–1743. https://doi.org/10.1016/j.ijhydene.2008.12.060

    Article  Google Scholar 

  61. Zhang M-L, Fan Y-T, Xing Y et al (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31:250–254. https://doi.org/10.1016/j.biombioe.2006.08.004

    Article  Google Scholar 

  62. Fan K-S, Kan N, Lay J (2006) Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR. Bioresour Technol 97:84–89. https://doi.org/10.1016/j.biortech.2005.02.014

    Article  Google Scholar 

  63. Li C, Fang HHP (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39. https://doi.org/10.1080/10643380600729071

    Article  MathSciNet  Google Scholar 

  64. Mao C, Feng Y, Wang X, Ren G (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy Rev 45:540–555. https://doi.org/10.1016/j.rser.2015.02.032

    Article  Google Scholar 

  65. Dareioti MA, Kornaros M (2015) Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: effect of hydraulic retention time. Bioresour Technol 175:553–562. https://doi.org/10.1016/j.biortech.2014.10.102

    Article  Google Scholar 

  66. Zhang Z-P, Show K-Y, Tay J-H et al (2006) Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochem 41:2118–2123. https://doi.org/10.1016/j.procbio.2006.05.021

    Article  Google Scholar 

  67. Si B, Li J, Li B et al (2015) The role of hydraulic retention time on controlling methanogenesis and homoacetogenesis in biohydrogen production using upflow anaerobic sludge blanket (UASB) reactor and packed bed reactor (PBR). Int J Hydrogen Energy 40:11414–11421. https://doi.org/10.1016/j.ijhydene.2015.04.035

    Article  Google Scholar 

  68. Ramírez-Morales JE, Tapia-Venegas E, Toledo-Alarcón J, Ruiz-Filippi G (2015) Simultaneous production and separation of biohydrogen in mixed culture systems by continuous dark fermentation. Water Sci Technol 71:1271–1285. https://doi.org/10.2166/wst.2015.104

    Article  Google Scholar 

  69. Karlsson A, Vallin L, Ejlertsson J (2008) Effects of temperature, hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation of food industry residues and manure. Int J Hydrogen Energy 33:953–962. https://doi.org/10.1016/j.ijhydene.2007.10.055

    Article  Google Scholar 

  70. Show K, Lee D, Chang J (2011) Bioreactor and process design for biohydrogen production. Bioresour Technol 102:8524–8533. https://doi.org/10.1016/j.biortech.2011.04.055

    Article  Google Scholar 

  71. Chou C-H, Wang C-W, Huang C-C, Lay J-J (2008) Pilot study of the influence of stirring and pH on anaerobes converting high-solid organic wastes to hydrogen. Int J Hydrogen Energy 33:1550–1558. https://doi.org/10.1016/j.ijhydene.2007.09.031

    Article  Google Scholar 

  72. Mizuno O, Dinsdale R, Hawkes FR et al (2000) Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol 73:59–65. https://doi.org/10.1016/S0960-8524(99)00130-3

    Article  Google Scholar 

  73. Mizuno O, Ohara T, Shinya M, Noike T (2000) Characteristics of hydrogen production from bean curd manufacturing waste by anaerobic microflora. Water Sci Technol 42:345–350. https://doi.org/10.2166/wst.2000.0401

    Article  Google Scholar 

  74. Hussy I, Hawkes FR, Dinsdale R, Hawkes DL (2003) Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora. Biotechnol Bioeng 84:619–626. https://doi.org/10.1002/bit.10785

    Article  Google Scholar 

  75. Liang T-M, Cheng S-S, Wu K-L (2002) Behavioral study on hydrogen fermentation reactor installed with silicone rubber membrane. Int J Hydrogen Energy 27:1157–1165. https://doi.org/10.1016/S0360-3199(02)00099-X

    Article  Google Scholar 

  76. Qiao W, Takayanagi K, Niu Q et al (2013) Long-term stability of thermophilic co-digestion submerged anaerobic membrane reactor encountering high organic loading rate, persistent propionate and detectable hydrogen in biogas. Bioresour Technol 149:92–102. https://doi.org/10.1016/j.biortech.2013.09.023

    Article  Google Scholar 

  77. Guo J, Wang W, Liu X et al (2014) Effects of thermal pre-treatment on anaerobic co-digestion of municipal biowastes at high organic loading rate. Chemosphere 101:66–70. https://doi.org/10.1016/j.chemosphere.2013.12.007

    Article  Google Scholar 

  78. Li D, Liu S, Mi L et al (2015) Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure. Bioresour Technol 189:319–326. https://doi.org/10.1016/j.biortech.2015.04.033

    Article  Google Scholar 

  79. Menon A, Wang J-Y, Giannis A (2017) Optimization of micronutrient supplement for enhancing biogas production from food waste in two-phase thermophilic anaerobic digestion. Waste Manag 59:465–475. https://doi.org/10.1016/j.wasman.2016.10.017

    Article  Google Scholar 

  80. Chandrasekhar K, Lee Y-J, Lee D-W (2015) Biohydrogen production: strategies to improve process efficiency through microbial routes. Int J Mol Sci 16:8266–8293. https://doi.org/10.3390/ijms16048266

    Article  Google Scholar 

  81. Zhang Y, Shen J (2006) Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria. Int J Hydrogen Energy 31:441–446. https://doi.org/10.1016/j.ijhydene.2005.05.006

    Article  Google Scholar 

  82. Elsharnouby O, Hafez H, Nakhla G, El Naggar MH (2013) A critical literature review on biohydrogen production by pure cultures. Int J Hydrogen Energy 38:4945–4966. https://doi.org/10.1016/j.ijhydene.2013.02.032

    Article  Google Scholar 

  83. Azwar MY, Hussain MA, Abdul-Wahab AK (2014) Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review. Renew Sustain Energy Rev 31:158–173. https://doi.org/10.1016/j.rser.2013.11.022

    Article  Google Scholar 

  84. Bakonyi P, Nemestóthy N, Simon V, Bélafi-Bakó K (2014) Review on the start-up experiences of continuous fermentative hydrogen producing bioreactors. Renew Sustain Energy Rev 40:806–813. https://doi.org/10.1016/j.rser.2014.08.014

    Article  Google Scholar 

  85. Wu S-Y, Lin C-N, Chang J-S (2003) Hydrogen production with immobilized sewage sludge in three-phase fluidized-bed bioreactors. Biotechnol Prog 19:828–832. https://doi.org/10.1021/bp0201354

    Article  Google Scholar 

  86. Yu H, Zhu Z, Hu W, Zhang H (2002) Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrogen Energy 27:1359–1365. https://doi.org/10.1016/S0360-3199(02)00073-3

    Article  Google Scholar 

  87. Saady NMC (2013) Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. Int J Hydrogen Energy 38:13172–13191. https://doi.org/10.1016/j.ijhydene.2013.07.122

    Article  Google Scholar 

  88. Bundhoo MAZ, Mohee R (2016) Inhibition of dark fermentative bio-hydrogen production: a review. Int J Hydrogen Energy 41:6713–6733. https://doi.org/10.1016/j.ijhydene.2016.03.057

    Article  Google Scholar 

  89. Mohan SV (2008) Fermentative hydrogen production with simultaneous wastewater treatment: influence of pretreatment and system operating conditions. J Sci Ind Res 67:950–961

    Google Scholar 

  90. Wang J, Wan W (2008) Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge. Int J Hydrogen Energy 33:2934–2941. https://doi.org/10.1016/j.ijhydene.2008.03.048

    Article  Google Scholar 

  91. Luo G, Xie L, Zou Z et al (2010) Evaluation of pretreatment methods on mixed inoculum for both batch and continuous thermophilic biohydrogen production from cassava stillage. Bioresour Technol 101:959–964. https://doi.org/10.1016/j.biortech.2009.08.090

    Article  Google Scholar 

  92. Kan E (2013) Effects of pretreatments of anaerobic sludge and culture conditions on hydrogen productivity in dark anaerobic fermentation. Renew Energy 49:227–231. https://doi.org/10.1016/j.renene.2012.01.026

    Article  Google Scholar 

  93. Penteado ED, Lazaro CZ, Sakamoto IK, Zaiat M (2013) Influence of seed sludge and pretreatment method on hydrogen production in packed-bed anaerobic reactors. Int J Hydrogen Energy 38:6137–6145. https://doi.org/10.1016/j.ijhydene.2013.01.067

    Article  Google Scholar 

  94. Kannaiah Goud R, Sarkar O, Venkata Mohan S (2014) Regulation of biohydrogen production by heat-shock pretreatment facilitates selective enrichment of Clostridium sp. Int J Hydrogen Energy 39:7572–7586. https://doi.org/10.1016/j.ijhydene.2013.10.046

    Article  Google Scholar 

  95. Cisneros-Pérez C, Carrillo-Reyes J, Celis LB et al (2015) Inoculum pretreatment promotes differences in hydrogen production performance in EGSB reactors. Int J Hydrogen Energy 40:6329–6339. https://doi.org/10.1016/j.ijhydene.2015.03.048

    Article  Google Scholar 

  96. Yin Y, Hu J, Wang J (2014) Enriching hydrogen-producing bacteria from digested sludge by different pretreatment methods. Int J Hydrogen Energy 39:13550–13556. https://doi.org/10.1016/j.ijhydene.2014.01.145

    Article  Google Scholar 

  97. Chaganti SR, Kim D-H, Lalman JA (2012) Dark fermentative hydrogen production by mixed anaerobic cultures: effect of inoculum treatment methods on hydrogen yield. Renew Energy 48:117–121. https://doi.org/10.1016/j.renene.2012.04.015

    Article  Google Scholar 

  98. Ramos LR, de Menezes CA, Soares LA et al (2020) Controlling methane and hydrogen production from cheese whey in an EGSB reactor by changing the HRT. Bioprocess Biosyst Eng 43:673–684. https://doi.org/10.1007/s00449-019-02265-9

    Article  Google Scholar 

  99. Sarkar O, Venkata Mohan S (2017) Pre-aeration of food waste to augment acidogenic process at higher organic load: valorizing biohydrogen, volatile fatty acids and biohythane. Bioresour Technol 242:68–76. https://doi.org/10.1016/j.biortech.2017.05.053

    Article  Google Scholar 

  100. Catal T, Lesnik KL, Liu H (2015) Suppression of methanogenesis for hydrogen production in single-chamber microbial electrolysis cells using various antibiotics. Bioresour Technol. https://doi.org/10.1016/j.biortech.2015.03.099

    Article  Google Scholar 

  101. Ramkumar N, Anupama PD, Nayak T, Subudhi S (2021) Scale up of biohydrogen production by a pure strain; Clostridium butyricum TM-9A at regulated pH under decreased partial pressure. Renew Energy 170:1178–1185. https://doi.org/10.1016/j.renene.2021.01.106

    Article  Google Scholar 

  102. Cieciura-w W, Borowski S, Otlewska A (2020) Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage via dark fermentation. Renew Energy 153:1226–1237. https://doi.org/10.1016/j.renene.2020.02.085

    Article  Google Scholar 

  103. Sinbuathong N, Sillapacharoenkul B (2021) Dark fermentation of starch factory wastewater with acid- and base-treated mixed microorganisms for biohydrogen production. Int J Hydrogen Energy 46:16622–16630. https://doi.org/10.1016/j.ijhydene.2020.06.109

    Article  Google Scholar 

  104. Mahato RK, Kumar D, Rajagopalan G (2020) Biohydrogen production from fruit waste by Clostridium strain BOH3. Renew Energy 153:1368–1377. https://doi.org/10.1016/j.renene.2020.02.092

    Article  Google Scholar 

  105. Salem AH, Brunstermann R, Mietzel T (2018) Effect of pre-treatment and hydraulic retention time on biohydrogen production from organic wastes. Int J Hydrogen Energy:1–10.https://doi.org/10.1016/j.ijhydene.2018.01.114

  106. Khongkliang P, Jehlee A, Kongjan P et al (2019) High efficient biohydrogen production from palm oil mill effluent by two-stage dark fermentation and microbial electrolysis under thermophilic condition. Int J Hydrogen Energy 44:31841–31852. https://doi.org/10.1016/j.ijhydene.2019.10.022

    Article  Google Scholar 

  107. Mu D, Liu H, Lin W et al (2020) Simultaneous biohydrogen production from dark fermentation of duckweed and waste utilization for microalgal lipid production. Bioresour Technol 302:122879. https://doi.org/10.1016/j.biortech.2020.122879

    Article  Google Scholar 

  108. Rai PK, Singh SP, Asthana RK, Singh S (2014) Biohydrogen production from sugarcane bagasse by integrating dark- and photo-fermentation. Bioresour Technol 152:140–146. https://doi.org/10.1016/j.biortech.2013.10.117

    Article  Google Scholar 

  109. Fan Y-T, Zhang Y-H, Zhang S-F et al (2006) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol 97:500–505. https://doi.org/10.1016/j.biortech.2005.02.049

    Article  Google Scholar 

  110. Sambusiti C, Bellucci M, Zabaniotou A et al (2015) Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: a comprehensive review. Renew Sustain Energy Rev 44:20–36. https://doi.org/10.1016/j.rser.2014.12.013

    Article  Google Scholar 

  111. Rai PK, Singh SP, Asthana RK (2012) Biohydrogen production from cheese whey wastewater in a two-step anaerobic process. Appl Biochem Biotechnol 167:1540–1549. https://doi.org/10.1007/s12010-011-9488-4

    Article  Google Scholar 

  112. Boboescu IZ, Ilie M, Gherman VD et al (2014) Revealing the factors influencing a fermentative biohydrogen production process using industrial wastewater as fermentation substrate. Biotechnol Biofuels 7:1–15. https://doi.org/10.1186/s13068-014-0139-1

    Article  Google Scholar 

  113. Fernandes BS, Peixoto G, Albrecht FR et al (2010) Potential to produce biohydrogen from various wastewaters. Energy Sustain Dev 14:143–148. https://doi.org/10.1016/j.esd.2010.03.004

    Article  Google Scholar 

  114. Fan Y (2006) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol 97:500–505. https://doi.org/10.1016/j.biortech.2005.02.049

    Article  Google Scholar 

  115. Hemalatha M, Sarkar O, Venkata Mohan S (2019) Self-sustainable azolla-biorefinery platform for valorization of biobased products with circular-cascading design. Chem Eng J 373:1042–1053. https://doi.org/10.1016/j.cej.2019.04.013

    Article  Google Scholar 

  116. FAO (2019) World fertilizer trends and outlook to 2022. A report published by Food and Agriculture Organization of the United Nations, Rome

  117. Chookaew T, O-Thong S, Prasertsan P (2012) Fermentative production of hydrogen and soluble metabolites from crude glycerol of biodiesel plant by the newly isolated thermotolerant Klebsiella pneumoniae TR17. Int J Hydrogen Energy 37:13314–13322. https://doi.org/10.1016/j.ijhydene.2012.06.022

    Article  Google Scholar 

  118. Uçkun Kiran E, Trzcinski AP, Ng WJ, Liu Y (2014) Bioconversion of food waste to energy: a review. Fuel 134:389–399. https://doi.org/10.1016/j.fuel.2014.05.074

    Article  Google Scholar 

  119. Rincon L, Puri M, Kojakovic A, Maltsoglou I (2019) The contribution of sustainable bioenergy to renewable electricity generation in Turkey: evidence based policy from an integrated energy and agriculture approach. Energy Policy 130:69–88. https://doi.org/10.1016/j.enpol.2019.03.024

    Article  Google Scholar 

  120. Aghbashlo M, Mandegari M, Tabatabaei M et al (2018) Exergy analysis of a lignocellulosic-based biorefinery annexed to a sugarcane mill for simultaneous lactic acid and electricity production. Energy 149:623–638. https://doi.org/10.1016/j.energy.2018.02.063

    Article  Google Scholar 

  121. Choi YY, Patel AK, Hong ME et al (2019) Microalgae bioenergy with carbon capture and storage (BECCS): an emerging sustainable bioprocess for reduced CO2 emission and biofuel production. Bioresour Technol Reports 7:100270. https://doi.org/10.1016/j.biteb.2019.100270

    Article  Google Scholar 

  122. Xu Y, Lu Y, Zheng L et al (2020) Perspective on enhancing the anaerobic digestion of waste activated sludge. J Hazard Mater 389:121847. https://doi.org/10.1016/j.jhazmat.2019.121847

    Article  Google Scholar 

  123. Aziz NIHA, Hanafiah MM (2020) Life cycle analysis of biogas production from anaerobic digestion of palm oil mill effluent. Renew Energy 145:847–857. https://doi.org/10.1016/j.renene.2019.06.084

    Article  Google Scholar 

  124. Atabani AE, Al-Muhtaseb AH, Kumar G et al (2019) Valorization of spent coffee grounds into biofuels and value-added products: pathway towards integrated bio-refinery. Fuel 254:115640. https://doi.org/10.1016/j.fuel.2019.115640

    Article  Google Scholar 

  125. Rajendran K, Drielak E, Sudarshan Varma V et al (2018) Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production—a review. Biomass Convers Biorefinery 8:471–483. https://doi.org/10.1007/s13399-017-0269-3

    Article  Google Scholar 

  126. Cheng J, Xie B, Zhou J et al (2010) Cogeneration of H2 and CH4 from water hyacinth by two-step anaerobic fermentation. Int J Hydrogen Energy 35:3029–3035. https://doi.org/10.1016/j.ijhydene.2009.07.012

    Article  Google Scholar 

  127. Kumar G, Bakonyi P, Periyasamy S et al (2015) Lignocellulose biohydrogen: practical challenges and recent progress. Renew Sustain Energy Rev 44:728–737. https://doi.org/10.1016/j.rser.2015.01.042

    Article  Google Scholar 

  128. Kumar G, Zhen G, Kobayashi T et al (2016) Impact of pH control and heat pre-treatment of seed inoculum in dark H2 fermentation: a feasibility report using mixed microalgae biomass as feedstock. Int J Hydrogen Energy 41:4382–4392. https://doi.org/10.1016/j.ijhydene.2015.08.069

    Article  Google Scholar 

  129. Kumar G, Sivagurunathan P, Pugazhendhi A et al (2017) A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options. Energy Convers Manag 141:390–402. https://doi.org/10.1016/j.enconman.2016.09.087

    Article  Google Scholar 

  130. Sivagurunathan P, Kumar G, Mudhoo A et al (2017) Fermentative hydrogen production using lignocellulose biomass: an overview of pre-treatment methods, inhibitor effects and detoxification experiences. Renew Sustain Energy Rev 77:28–42. https://doi.org/10.1016/j.rser.2017.03.091

    Article  Google Scholar 

  131. Ren N-Q, Cao G-L, Guo W-Q et al (2010) Biological hydrogen production from corn stover by moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrogen Energy 35:2708–2712. https://doi.org/10.1016/j.ijhydene.2009.04.044

    Article  Google Scholar 

  132. Zhang K, Ren N-Q, Wang A-J (2015) Fermentative hydrogen production from corn stover hydrolyzate by two typical seed sludges: effect of temperature. Int J Hydrogen Energy 40:3838–3848. https://doi.org/10.1016/j.ijhydene.2015.01.120

    Article  Google Scholar 

  133. Liu C, Cheng X (2010) Improved hydrogen production via thermophilic fermentation of corn stover by microwave-assisted acid pretreatment. Int J Hydrogen Energy 35:8945–8952. https://doi.org/10.1016/j.ijhydene.2010.06.025

    Article  Google Scholar 

  134. Zhang B, Zhang SX, Yao R et al (2021) Progress and prospects of hydrogen production: opportunities and challenges. J Electron Sci Technol 19:1–15. https://doi.org/10.1016/J.JNLEST.2021.100080

    Article  Google Scholar 

  135. Sharma M, Kaushik A (2017) Biohydrogen economy: challenges and prospects for commercialization. In: Singh A, Rathore D (eds) Biohydrogen production: sustainability of current technology and future perspective. Springer India, New Delhi, pp 253–267

    Chapter  Google Scholar 

  136. Koyama MH, Araújo Júnior MM, Zaiat M, Ferraz Júnior ADN (2016) Kinetics of thermophilic acidogenesis of typical Brazilian sugarcane vinasse. Energy 116:1097–1103. https://doi.org/10.1016/j.energy.2016.10.043

    Article  Google Scholar 

  137. Ferraz Júnior ADN, Etchebehere C, Zaiat M (2015) High organic loading rate on thermophilic hydrogen production and metagenomic study at an anaerobic packed-bed reactor treating a residual liquid stream of a Brazilian biorefinery. Bioresour Technol 186:81–88. https://doi.org/10.1016/j.biortech.2015.03.035

    Article  Google Scholar 

  138. Djalma Nunes Ferraz Júnior A, Wenzel J, Etchebehere C, Zaiat M (2014) Effect of organic loading rate on hydrogen production from sugarcane vinasse in thermophilic acidogenic packed bed reactors. Int J Hydrogen Energy 39:16852–16862. https://doi.org/10.1016/j.ijhydene.2014.08.017

    Article  Google Scholar 

  139. del Pilar A-R, Gonçalves da Fonseca S, Canedo da Silva C et al (2015) The use of the carbon/nitrogen ratio and specific organic loading rate as tools for improving biohydrogen production in fixed-bed reactors. Biotechnol Rep 5:46–54. https://doi.org/10.1016/j.btre.2014.10.010

    Article  Google Scholar 

  140. Ferraz Júnior ADN, Etchebehere C, Zaiat M (2015) Mesophilic hydrogen production in acidogenic packed-bed reactors (APBR) using raw sugarcane vinasse as substrate: Influence of support materials. Anaerobe 34:94–105. https://doi.org/10.1016/j.anaerobe.2015.04.008

    Article  Google Scholar 

  141. Han W, Fang J, Liu Z, Tang J (2016) Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste. Bioresour Technol 202:107–112. https://doi.org/10.1016/j.biortech.2015.11.072

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RJ, NLP, and CA: conceptualization and writing the original draft. TG, SKJ, and SSM: literature analysis, review, and editing.

Corresponding author

Correspondence to Narayan Lal Panwar.

Ethics declarations

Ethical approval and consent to participate

This work does not contain any studies with human participants or animals. All authors provided informed consent to participate in this study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, R., Panwar, N.L., Jain, S.K. et al. Bio-hydrogen production through dark fermentation: an overview. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03282-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03282-7

Keywords

Navigation