Skip to main content

Advertisement

Log in

Joint downlink user power allocation and rate maximization in UAV relay assisted SWIPT-NOMA network

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, in order to improve the performance of wireless fifth generation (5G) communication system and save power consumption, the research objectives of optimal power allocation and maximizing the total user rate in a multi-user cluster in the downlink of non-orthogonal multiple access (NOMA) access system are realized based on the simultaneous wireless information and power transfer (SWIPT). A SWIPT-NOMA system assisted by dynamic unmanned aerial vehicle (UAV) relay is constructed. The UAV relay dynamic programming under two-hop communication was firstly studied, and the global optimal power allocation strategy for downlink users of SWIPT-NOMA system is found. Finally, the optimal relay selection algorithm was used to maximize the total user rate, which was verified by Monto Carlo simulation. Simulation results show that compared with the traditional FDMA system scheme, the performance of the proposed system model in terms of outage probability, energy consumption and total user rate of multi-user cluster deployed in dynamic UAV relay system under different distribution scenarios is better than that of the benchmark scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang, W., et al. (2020). Joint precoding optimization for secure SWIPT in UAV-aided NOMA networks. IEEE Transactions on Communications, 1, 99.

    Google Scholar 

  2. Li, Y., et al. (2022). Joint trajectory and power optimization for jamming-aided NOMA-UAV secure networks. IEEE Systems Journal, 1, 1.

    Google Scholar 

  3. Tranhuu, Q., Phanca, V., & Quoc-Tuan, V. (2021). Optimizing energy efficiency for supporting near-cloud access region of UAV-based NOMA networks in IoT systems. Wireless Communications and Mobile Computing, 1, 1.

    Article  Google Scholar 

  4. Tran, H. Q. (2021). Two energy harvesting protocols for SWIPT at UAVs in cooperative relaying networks of IoT systems. Wireless Personal Communications, 122(4), 3719–3740.

    Article  Google Scholar 

  5. Rahdari, F., Movahhedinia, N., Khayyambashi, M. R., & Valaee, S. (2021). Qoe-aware power control and user grouping in cognitive radio ofdm-noma systems. Computer Networks, 189(2), 107906.

    Article  Google Scholar 

  6. Muhammed, A. J., Zheng, M., Ding, Z., Xiao, M., & Zhang, Z. (2021). Resource allocation for energy-efficient noma system in coordinated multi-point networks. IEEE Transactions on Vehicular Technology, 99, 1–1.

    Google Scholar 

  7. Masaracchia, A., Nguyen, V. L., & Nguyen, M. T. (2020). The impact of user mobility into non-orthogonal multiple access (noma) transmission systems. Industrial Networks and Intelligent Systems, 7(24), 1.

    Google Scholar 

  8. Tang, N., et al. (2020). Cognitive NOMA for UAV-enabled secure communications: Joint 3D trajectory design and power allocation. IEEE Access, 99, 1–1.

    Google Scholar 

  9. Feng, W., et al. (2021). Hybrid beamforming design and resource allocation for UAV-aided wireless-powered mobile edge computing networks with NOMA. IEEE Journal on Selected Areas in Communications, 99, 1–1.

    Google Scholar 

  10. Feng, W., et al. (2020). Joint 3D trajectory and power optimization for UAV-aided mmWave MIMO-NOMA networks. IEEE Transactions on Communications, 99, 1–1.

    Article  Google Scholar 

  11. Pan, C., Ren, H., Deng, Y., Elkashlan, M., & Nallanathan, A. (2019). Joint blocklength and location optimization for urllc-enabled uav relay systems. IEEE Communications Letters., 23, 498–501.

    Article  Google Scholar 

  12. Ren, H., Pan, C., Wang, K., Xu, W., Elkashlan, M., & Nallanathan, A. (2020). Joint transmit power and placement optimization for urllc-enabled uav relay systems. IEEE Transactions on Vehicular Technology, 69, 8003–8007.

    Article  Google Scholar 

  13. Dan, Z., Wu, X., Zhu, S., Zhuang, T., & Wang, J. Y. (2019). On the Outage Performance of Dual-Hop UAV Relaying with Multiple Sources. 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC).

  14. Khuwaja, A. A., Chen, Y., & Zheng, G. (2019). Effect of user mobility and channel fading on the outage performance of uav communications. IEEE Wireless Communication Letters, 99, 1–1.

    Google Scholar 

  15. Deng, D., & Zhu, M. (2021). Joint uav trajectory and power allocation optimization for noma in cognitive radio network. Physical Communication, 46(6), 101328.

    Article  Google Scholar 

  16. Wang, J., et al. (2022). Secrecy outage analysis for UAV assisted satellite-terrestrial SWIPT systems with NOMA. Digital Signal Processing, 123, 103453.

    Article  Google Scholar 

  17. Chen, X., Yang, Z., Zhao, N., Chen, Y., & Yu, R. (2020). Secure transmission via power allocation in noma-uav networks with circular trajectory. IEEE Transactions on Vehicular Technology, 99, 1.

    Article  Google Scholar 

  18. Sun, X., Yang, W., & Cai, Y. (2019). Secure communication in noma assisted millimeter wave swipt uav networks. IEEE Internet of Things Journal, 99, 1.

    Google Scholar 

  19. Zhao, N., Li, Y., Zhang, S., Chen, Y., & Wang, X. (2020). Security enhancement for noma-uav networks. IEEE Transactions on Vehicular Technology, 99, 1.

    Article  Google Scholar 

  20. Ye, J., Zhang, C., Lei, H., Pan, G., & Ding, Z. (2019). Secure uav-to-uav systems with spatially random uavs. Wireless Communications Letters, IEEE, 8(2), 564–567.

    Article  Google Scholar 

  21. Lei, H., Wang, D., Park, K. H., Ansari, I. S., Pan, G., & Alouini, M. S. (2019). On Secure UAV Communication Systems with Randomly Located Eavesdroppers. In 2019 IEEE/CIC International Conference on Communications in China (ICCC). IEEE.

  22. Ma, R., Yang, W., Zhang, Y., Liu, J., & Shi, H. (2019). Secure mmWave communication using uav-enabled relay and cooperative jammer. IEEE Access, 99, 1.

    Google Scholar 

  23. Li, X., Wang, Q., Liu, Y., Tsiftsis, T. A., Ding, Z., & Nallanathan, A. (2020). Uav-aided multi-way noma networks with residual hardware impairments.

  24. Hu, Z., Yuan, C., Zhu, F., & Gao, F. (2016). Weighted sum transmit power minimization for full-duplex system with swipt and self-energy recycling. IEEE Access, 4, 4874–4881.

    Article  Google Scholar 

  25. Fang, F., Xu, Y., Ding, Z., Shen, C., & Karagiannidis, G. K. (2020). Optimal resource allocation for delay minimization in noma-mec networks. IEEE Transactions on Communications, 99, 1.

    Article  Google Scholar 

  26. Rauniyar, A., Engelstad, P. E., & Osterbo, O. N. (2020). On the Performance of Bidirectional NOMA-SWIPT Enabled IoT Relay Networks. IEEE Sensors Journal, 99, 1.

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junpeng Li.

Ethics declarations

Conflict of interest

Conflict of interest the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Using downlink NOMA transmission, the derivation process of the expression of the total transmission rate to the user node substitutes (13) into (14) to obtain:

$$R_{U,n} = B\log \left( {\frac{{\mathop {\left| {\mathop h\nolimits_{U,i = 1} } \right|}\nolimits^{2} \sum\limits_{i = 1}^{n} {\mathop \gamma \nolimits_{i} \mathop P\nolimits_{U} + \mathop \theta \nolimits^{2} } }}{{\mathop {\left| {\mathop h\nolimits_{U,j} } \right|}\nolimits^{2} \sum\limits_{j = 1}^{n - 1} {\mathop \gamma \nolimits_{j} \mathop P\nolimits_{U} + \mathop \theta \nolimits^{2} } }}} \right)$$
(35)

Then the total downlink transmission rate can be pushed to:

$$\begin{aligned} \sum\limits_{n = 1}^{N} {R_{U,n} } & = B\log \left( {\mathop {\mathop {\left| {\mathop h\nolimits_{U,1} } \right|}\nolimits^{2} \gamma }\nolimits_{1} \mathop P\nolimits_{U} + \mathop \theta \nolimits^{2} } \right) \\ & \quad + B\log \left( {\frac{{\mathop {\mathop {\left| {\mathop h\nolimits_{U,1} } \right|}\nolimits^{2} \gamma }\nolimits_{1} \mathop P\nolimits_{U} + \mathop {\mathop {\left| {\mathop h\nolimits_{U,2} } \right|}\nolimits^{2} \gamma }\nolimits_{2} \mathop P\nolimits_{U} + \mathop \theta \nolimits^{2} }}{{\mathop {\mathop {\left| {\mathop h\nolimits_{U,1} } \right|}\nolimits^{2} \gamma }\nolimits_{1} \mathop P\nolimits_{U} + \mathop \theta \nolimits^{2} }}} \right) \\ & \quad + \cdots + B\log \left( {\frac{{\mathop {\mathop {\sum\limits_{i = 1}^{N} {\mathop {\mathop {\left| {\mathop h\nolimits_{U,i} } \right|}\nolimits^{2} \gamma }\nolimits_{i} \mathop P\nolimits_{U} } }\nolimits_{{}} + \mathop \theta \nolimits^{2} }\nolimits^{{}} }}{{\mathop {\mathop {\sum\limits_{j = 1}^{N - 1} {\mathop {\mathop {\left| {\mathop h\nolimits_{U,j} } \right|}\nolimits^{2} \gamma }\nolimits_{j} \mathop P\nolimits_{U} } }\nolimits_{{}} + \mathop \theta \nolimits^{2} }\nolimits^{{}} }}} \right) \\ & = B\log \left( {\mathop {\sum\limits_{i = 1}^{N} {\mathop {\mathop {\left| {\mathop h\nolimits_{U,i} } \right|}\nolimits^{2} \gamma }\nolimits_{i} \mathop P\nolimits_{U} } }\nolimits_{{}} + \mathop \theta \nolimits^{2} } \right) \\ \end{aligned}$$
(36)

Appendix 2

derivation process of interrupt probability expression of base station source node and UAV interrupt node.

Let

$$\begin{aligned} & \mathop {\theta_{U,S} }\nolimits^{2} = \mathop \theta \nolimits^{2} = 1 \\ & \mathop {\left| {\mathop h\nolimits_{U,S} } \right|}\nolimits^{2} = X;\mathop {\left| {\mathop h\nolimits_{U,n} } \right|}\nolimits^{2} = Y;\mathop {\left| {\mathop h\nolimits_{U,1} } \right|}\nolimits^{2} = Z;\mathop {\left| {\mathop h\nolimits_{U,N} } \right|}\nolimits^{2} = W \\ & a = \eta (1 - \beta )P_{S} ;b = \theta^{2} \\ & m = \beta \mathop {\theta_{U,S} }\nolimits^{2} + \mathop \theta \nolimits^{2} ;d = \beta P_{S} ;x_{0} = \frac{Lm}{d};L = \frac{{dx_{0} }}{m} \\ & F = \frac{Lb}{{\mathop \gamma \nolimits_{1} - \sum\limits_{i = 1}^{N - 1} {\mathop \gamma \nolimits_{i} .L} }};u(x) = \frac{F}{ax};P_{U} = \frac{ax}{b};H = \frac{Lb}{{\mathop \gamma \nolimits_{N} }} \\ \end{aligned}$$

Then the outage probability of the base station source node is

$$\begin{aligned} P_{{out_{S} }} & = \Pr (min(R_{U,S} ,R) \le R_{k}^{\min } )\\ & = 1 - \Pr (R_{U,S} \ge R_{k}^{\min } ,R \ge R_{k}^{\min } ) \\ & = 1 - \Pr (Blog(1 + SINR_{U,S} )\\ & \ge Blog(1 + L),Blog(1 + SINR_{U,n} ) \ge Blog(1 + L)) \\ & = 1 - Pr(\frac{{\beta P_{S} \mathop {\left| {\mathop h\nolimits_{U,S} } \right|}\nolimits^{2} }}{{\beta \mathop {\theta_{U,S} }\nolimits^{2} + \mathop \theta \nolimits^{2} }} \ge L,\mathop {\left| {\mathop h\nolimits_{U,i} } \right|}\nolimits^{2} P_{U} \sum\limits_{i = 1}^{N} {\mathop \gamma \nolimits_{i} \ge L} )\\ & = 1 - Pr\left( {\tfrac{dX}{m} \ge L,\frac{{axY\sum\limits_{i = 1}^{N} {\gamma_{i} } }}{b} \ge L} \right) \\ & = 1 - Pr\left( {X \ge \frac{Lm}{d},Y \ge \frac{Lb}{{ax\sum\limits_{i = 1}^{N} {\gamma_{i} } }}} \right) \\ & = 1 - Pr\left( {X \ge \frac{Lm}{d},Y \ge \frac{{bdx_{0} }}{{max\sum\limits_{i = 1}^{N} {\gamma_{i} } }}} \right) \\ & = 1 - \int_{{x_{0} }}^{\infty } {\left( {\int_{{\frac{{bdx_{0} }}{{max\sum\limits_{i = 1}^{N} {\gamma_{i} } }}}}^{\infty } {f_{Y} (y)dy} } \right)\lambda_{h} e}^{{ - \lambda_{h} x}} dx \\ & = 1 - \int_{{x_{0} }}^{\infty } {\lambda_{h} e}^{{ - \lambda_{h} x}} e^{{ - \lambda_{g} \frac{{bdx_{0} }}{{max\sum\limits_{i = 1}^{N} {\gamma_{i} } }}}} dx \\ & = 1 - \lambda_{h} \int_{{x_{0} }}^{\infty } e^{{ - \left( {\lambda_{h} x + \lambda_{g} \frac{{bdx_{0} }}{{max\sum\limits_{i = 1}^{N} {\gamma_{i} } }}} \right)}} dx \\ \end{aligned}$$
(37)

The outage probability of UAV relay node is:

$$\begin{aligned} P_{{out_{U} }} & = \Pr (min(R_{U,1} ,R_{U,N} ) \le R_{k}^{\min } ) \\ & = 1 - \Pr (R_{U,1} \ge R_{k}^{\min } ,R_{U,N} \ge R_{k}^{\min } ) \\ & = 1 - \Pr (Blog(1 + SINR_{U,1} ) \ge Blog(1 + L),\\ & \quad Blog(1 + SINR_{U,N} ) \ge Blog(1 + L)) \\ & = 1 - Pr\left( {\frac{{\mathop {\left| {\mathop h\nolimits_{U,1} } \right|}\nolimits^{2} \gamma_{1} P_{U} }}{{\mathop {\left| {\mathop h\nolimits_{U,1} } \right|}\nolimits^{2} \sum\limits_{i = 1}^{N - 1} {\gamma_{i} P_{U} } + b_{{}} }} \ge L,\frac{{\mathop {\left| {\mathop h\nolimits_{U,N} } \right|}\nolimits^{2} P_{U} \mathop \gamma \nolimits_{N} }}{b} \ge L} \right) \\ & = 1 - Pr\left( {\tfrac{{Z\gamma_{1} P_{U} }}{{Z\sum\limits_{i = 1}^{N - 1} {\gamma_{i} P_{U} } + b_{{}} }} \ge L,\frac{{WP_{U} \mathop \gamma \nolimits_{N} }}{b} \ge L} \right) \\ & = 1 - Pr\left( {Z \ge \frac{Lb}{{(\gamma_{1} - \sum\limits_{i = 1}^{N - 1} {\gamma_{i} .L)ax} }},W \ge \frac{Lb}{{ax\gamma_{N} }}} \right) \\ & = 1 - Pr\left( {Z \ge u(x),W \ge \frac{H}{ax}} \right) \\ & = 1 - \int_{0}^{\infty } {\Pr } (Z \ge u(x))Pr\left( {W \ge \frac{H}{ax}} \right)dx \\ & = 1 - \int_{{_{0} }}^{\infty } {\left( {\int_{u(x)}^{\infty } {\lambda_{g} e^{{ - \lambda_{g} z}} } dz\int_{H}^{\infty } {\lambda_{w} e^{{ - \lambda_{w} W}} } dW} \right)} \lambda_{h} e^{{ - \lambda_{h} x}} dx \\ & = 1 - \lambda_{h} \int_{{_{0} }}^{\infty } e^{{ - (\lambda_{h} x + \lambda_{g} u(x) + \lambda_{w} H)}} dx \\ \end{aligned}$$
(38)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Li, J. & Hu, Q. Joint downlink user power allocation and rate maximization in UAV relay assisted SWIPT-NOMA network. Telecommun Syst 81, 307–321 (2022). https://doi.org/10.1007/s11235-022-00945-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-022-00945-8

Keywords

Navigation