Skip to main content
Log in

Control of the Molten Pool Morphology and Crystal Growth Behavior in Laser Powder Deposition of Single-Crystal Superalloy via Adjusting the Defocusing Amount and Scanning Speed

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Stably controlling the monocrystalline nature in the repaired zone is a longstanding challenge for the laser additively repair of single-crystal components. In this study, the coupling effect of laser defocusing amount and scanning speed on the molten pool morphology and associated crystal growth behaviors in laser powder deposition of single-crystal superalloy was studied through single-track experiments and an improved mathematical model. Multi-layer experiments were conducted to verify the practicability of optimized processing parameters. The results indicated that the defocusing amount can effectively adjust the laser energy intensity distribution through changing the laser-powder interaction distance and resultantly tailor the molten pool morphology and associated crystal growth behaviors. With the defocusing amount changing from − 3 to + 3 mm, the toe angle of molten pool increases dramatically and induces the formation of nonideal columnar crystals at the toe edge. The increase in laser scanning speed shrinks the molten pool size, restrains the formation of stray grains and nonideal columnar crystals, and enhances the total-remelting ability of stray grains. Coupling tailoring negative defocusing amount and proper scanning speed (− 3 mm and 9 mm/s are optimal under the given conditions) benefits the epitaxial-growth continuity of columnar dendrites and reproduces complete monocrystalline structure in laser SX-repair process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P. Nörtershäuser, J. Frenzel, A. Ludwig, K. Neuking, and G. Eggeler, The Effect of Cast Microstructure and Crystallography on Rafting, Dislocation Plasticity and Creep Anisotropy of Single Crystal Ni-Base Superalloys, Mater. Sci. Eng., A, 2015, 626, p 305-312.

    Article  Google Scholar 

  2. T. Ford, Single Crystal Blades, Aircr. Eng. Aerosp. Technol., 1997, 69(6), p 564-566.

    Article  Google Scholar 

  3. J. Yu, X. Sun, N. Zhao, T. Jin, H. Guan, and Z. Hu, Effect of Heat Treatment on Microstructure and Stress Rupture Life of DD32 Single Crystal Ni-Base Superalloy, Mater. Sci. Eng., A, 2007, 460, p 420-427.

    Article  Google Scholar 

  4. X. Yu, C. Wang, X. Zhang, P. Yan, and Z. Zhang, Synergistic Effect of Rhenium and Ruthenium in Nickel-Based Single-Crystal Superalloys, J. Alloy. Compd., 2014, 582, p 299-304.

    Article  CAS  Google Scholar 

  5. Y. Jian, L. Jiarong, L. Shizhong, H. Mei, S. Zhenxue, Tensile behavior and deformation mechanism of secondary generation single crystal superalloy DD6 at 1070 C, Proceedings of the 3rd International Conference on Material, Mechanical and Manufacturing Engineering, 2015/08, 2015, Atlantis Press, pp 2261-2266

  6. R. Reed, A. Yeh, S. Tin, S. Babu, and M. Miller, Identification of the Partitioning Characteristics of Ruthenium in Single Crystal Superalloys using atom Probe Tomography, Scripta Mater., 2004, 51(4), p 327-331.

    Article  CAS  Google Scholar 

  7. R.C. Reed, The superalloys: fundamentals and applications, Cambridge University Press, 2006

  8. S. Babu, S. David, J. Park, and J. Vitek, Joining of Nickel Base Superalloy Single Crystals, Sci. Technol. Weld. Joining, 2004, 9(1), p 1-12.

    Article  CAS  Google Scholar 

  9. L.J. Roedl, R. Hensley, Gas turbine blade having a monocrystalline airfoil with a repair squealer tip, and repair method, ed., Google Patents, 2007

  10. M.B. Henderson, D. Arrell, R. Larsson, M. Heobel, and G. Marchant, Nickel Based superalloy Welding Practices for Industrial Gas Turbine Applications, Sci. Technol. Weld. Joining, 2004, 9(1), p 13-21.

    Article  CAS  Google Scholar 

  11. Y.J. Liang, X. Cheng, J. Li, and H.M. Wang, Microstructural Control During Laser Additive Manufacturing of Single-Crystal Nickel-Base superalloys: New Processing–Microstructure Maps Involving Powder Feeding, Mater. Des., 2017, 130, p 197-207.

    Article  CAS  Google Scholar 

  12. Y.J. Liang, J. Li, A. Li, X. Cheng, S. Wang, and H.M. Wang, Experimental Optimization of Laser Additive Manufacturing Process of Single-Crystal Nickel-Base superalloys by a Statistical Experiment Design Method, J. Alloy. Compd., 2017, 697, p 174-181.

    Article  CAS  Google Scholar 

  13. S.S. Babu, N. Raghavan, J. Raplee, S.J. Foster, C. Frederick, M. Haines, R. Dinwiddie, M.K. Kirka, A. Plotkowski, Y. Lee, and R.R. Dehoff, Additive Manufacturing of Nickel Superalloys: Opportunities for Innovation and Challenges Related to Qualification, Metall. and Mater. Trans. A., 2018, 49(9), p 3764-3780.

    Article  CAS  Google Scholar 

  14. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Additive Manufacturing of Metallic Components - PROCESS, Structure and Properties, Progress Mater. Sci., 2018, 92, p 112-224.

    Article  CAS  Google Scholar 

  15. H. Chen, G. Huang, Y. Lu, S. Lin, and D. Liu, Epitaxial Laser Deposition of Single Crystal Ni-Based superalloy: Variation of Stray Grains, Mater. Charact., 2019, 158, 109982.

    Article  CAS  Google Scholar 

  16. M. Rappaz, S. David, J. Vitek, and L. Boatner, Analysis of Solidification Microstructures in Fe-Ni-Cr Single-Crystal Welds, Metall. Trans. A, 1990, 21(6), p 1767-1782.

    Article  Google Scholar 

  17. M. Rappaz, S. David, J. Vitek, and L. Boatner, Development of Microstructures in Fe− 15Ni− 15Cr Single Crystal Electron Beam Welds, Metall. Trans. A, 1989, 20(6), p 1125-1138.

    Article  Google Scholar 

  18. W. Liu and J. DuPont, Effects of Melt-Pool Geometry on Crystal Growth and Microstructure Development in Laser Surface-Melted superalloy Single Crystals: Mathematical Modeling of Single-Crystal Growth in a Melt Pool (part I), Acta Mater., 2004, 52(16), p 4833-4847.

    CAS  Google Scholar 

  19. W. Liu and J. DuPont, Effects of Substrate Crystallographic Orientations on Crystal Growth and Microstructure Development in Laser Surface-Melted Superalloy Single Crystals, Acta Mater., 2005, 53(5), p 1545-1558.

    Article  CAS  Google Scholar 

  20. Z. Liu and H. Qi, Mathematical Modeling of Crystal Growth and Microstructure Formation in Multi-layer and Multi-track Laser Powder Deposition of Single-crystal Superalloy, Phys. Procedia, 2014, 56, p 411-420.

    Article  CAS  Google Scholar 

  21. Z. Liu and J. Shu, Control of the Microstructure Formation in the Near-Net-Shape Laser Additive tip-Remanufacturing Process of Single-Crystal Superalloy, Opt. Laser Technol., 2021, 133, 106537.

    Article  CAS  Google Scholar 

  22. R. Acharya and S. Das, Additive Manufacturing of IN100 Superalloy Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair: Process Development, Model. Microstruct. Character., Process Control, Metall. Mater. Trans. A, 2015, 46(9), p 3864-3875.

    Article  CAS  Google Scholar 

  23. R. Vilar and A. Almeida, Repair and Manufacturing of Single Crystal Ni-Based Superalloys Components by Laser Powder Deposition—A Review, J. Laser Appl., 2015, 27(S1), p S17004.

    Article  Google Scholar 

  24. Z. Liu and H. Qi, Effects of Substrate Crystallographic Orientations on Crystal Growth and Microstructure Formation in Laser Powder Deposition of Nickel-Based Superalloy, Acta Mater., 2015, 87, p 248-258.

    Article  CAS  Google Scholar 

  25. J. Hunt, Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic, Mater. Sci. Eng., 1984, 65(1), p 75-83.

    Article  CAS  Google Scholar 

  26. M. Gäumann, C. Bezencon, P. Canalis, and W. Kurz, Single-Crystal Laser Deposition of Superalloys: Processing–Microstructure Maps, Acta Mater., 2001, 49(6), p 1051-1062.

    Article  Google Scholar 

  27. M. Gäumann, S. Henry, F. Cleton, J.D. Wagniere, and W. Kurz, Epitaxial Laser Metal Forming: Analysis of Microstructure Formation, Mater. Sci. Eng., A, 1999, 271(1), p 232-241.

    Article  Google Scholar 

  28. Z. Liu and Z. Wang, Effect of Substrate Preset Temperature on Crystal Growth and Microstructure Formation in Laser Powder deposition of Single-Crystal Superalloy, J. Mater. Sci. Technol., 2018, 34(11), p 2116-2124.

    Article  CAS  Google Scholar 

  29. Y. Wang, J. Choi and J. Mazumder, Laser-Aided Direct Writing of Nickel-Based Single-Crystal Super Alloy (N5), Metall. Mater. Trans. A., 2016, 47(12), p 5685-5690.

    Article  CAS  Google Scholar 

  30. B. Rottwinkel, A. Pereira, I. Alfred, C. Noelke, V. Wesling, and S. Kaierle, Turbine Blade Tip Single Crystalline Clad Deposition with applied Remelting Passes for Well Oriented Volume Extension, J. Laser Appl., 2017, 29(2), 022310.

    Article  Google Scholar 

  31. S. Kaierle, L. Overmeyer, I. Alfred, B. Rottwinkel, J. Hermsdorf, V. Wesling, and N. Weidlich, Single-Crystal Turbine Blade Tip Repair by Laser Cladding and Remelting, CIRP J. Manuf. Sci. Technol., 2017, 19, p 196-199.

    Article  Google Scholar 

  32. Z. Liu and Q. Zhu, Effect of Pulse Frequency on the Columnar-to-Equiaxed Transition and Microstructure Formation in Quasi-Continuous-Wave Laser Powder Deposition of Single-Crystal Superalloy, Metall. and Mater. Trans. A., 2021, 52(2), p 776-788.

    Article  CAS  Google Scholar 

  33. H. Helmer, A. Bauereiß, R.F. Singer, and C. Körner, Grain Structure Evolution in Inconel 718 During Selective Electron Beam Melting, Mater. Sci. Eng., A, 2016, 668, p 180-187.

    Article  CAS  Google Scholar 

  34. X. Zhao, J. Chen, X. Lin, and W. Huang, Study on Microstructure and Mechanical Properties of Laser Rapid Forming Inconel 718, Mater. Sci. Eng. A, 2008, 478, p 119-124.

    Article  Google Scholar 

  35. T. DebRoy, T. Mukherjee, J.O. Milewski, J.W. Elmer, B. Ribic, J.J. Blecher, and W. Zhang, Scientific, Technological and Economic Issues in Metal Printing and their Solutions, Nat. Mater., 2019, 18(10), p 1026-1032.

    Article  CAS  Google Scholar 

  36. Z. Liu, L. Jiang, Z. Wang, and L. Song, Mathematical Modeling of Transport Phenomena in Multi-track and Multi-layer Laser Powder Deposition of Single-Crystal Superalloy, Metall. Mater. Trans. A., 2018, 49(12), p 6533-6543.

    Article  CAS  Google Scholar 

  37. H. Qi, M. Azer, and P. Singh, Adaptive Toolpath Deposition Method for Laser Net Shape Manufacturing and Repair of Turbine Compressor Airfoils, Int. J. Adv. Manuf. Technol., 2010, 48(1-4), p 121-131.

    Article  Google Scholar 

  38. Z. Lu, A. Zhang, Z. Tong, X. Yang, D. Li, and B. Lu, Fabricating the Steam Turbine Blade by Direct Laser Forming, Mater. Manuf. Processes, 2011, 26(7), p 879-885.

    Article  CAS  Google Scholar 

  39. Z. Liu and H. Qi, Numerical Simulation of Transport Phenomena for a Double-Layer Laser Powder Deposition of Single-Crystal Superalloy, Metall Mater Trans A, 2014, 45A(4), p 1903-1915.

    Article  Google Scholar 

  40. Z. Liu and H. Qi, Effects of Processing Parameters on Crystal Growth and Microstructure Formation in Laser Powder Deposition of Single-Crystal Superalloy, J. Mater. Process. Technol., 2015, 216, p 19-27.

    Article  CAS  Google Scholar 

  41. A.J. Pinkerton and L. Li, Modelling powder concentration distribution from a coaxial deposition nozzle for laser-based rapid tooling, J. Manuf. Sci. Eng., 2004, 126(1), p 33-41.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51905253, 51975136, 51575116), the Natural Science Foundation of Guangdong Province of China (Grant No. 2018A030310132), and the Natural Science Foundation of Shenzhen of China (Grant No. JCYJ20190809152401680).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoyang Liu or Xiaochu Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Liang, Z., Zou, T. et al. Control of the Molten Pool Morphology and Crystal Growth Behavior in Laser Powder Deposition of Single-Crystal Superalloy via Adjusting the Defocusing Amount and Scanning Speed. J Therm Spray Tech 31, 2594–2608 (2022). https://doi.org/10.1007/s11666-022-01446-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01446-5

Keywords

Navigation