Skip to main content

Advertisement

Log in

Thermoelastic properties and phase diagram for rare-earth ytterbium

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We report results for finite temperature (T) cubic second-order elastic constant (SOEC), elastic moduli, Poisson ratio, Zener elastic anisotropy, and sound velocities for fcc and bcc ytterbium up to melting temperature. We assume that the thermoelasticity is predominantly controlled by equilibrium volume at a given temperature. Our previous first principles scheme for assessing various thermophysical quantities for fcc ytterbium, after including the phonon anharmonicity and the electronic contribution [J. Appl. Phys. 129, 035107 (2021)], has been extended to determine the free energy of bcc-Yb and thereby the high-T structural phase transition (SPT). Computed results for various elastic and anisotropic parameters for both the phases and at the onset of the fcc–bcc phase transformation allowed us to discuss the role of elasticity to understand the physical mechanism operative at the SPT. It is found that the spinodal and shear elastic conditions are obeyed across the SPT, but the Born criterion needs to be modified to incorporate the pressure term to encompass the SPT. For the bcc structure, relatively large lattice anharmonicity and significant thermal stress result in a softer EoS. This, in connection to the modified Born criterion (MBC), explains the elastically stable bcc state. We confirm that the zero-pressure SPT temperature due to MBC (1077 K) agrees with the thermodynamic value (1037 K). The transition temperature is in excellent agreement with experimental data from zero pressure up to 4 GPa of pressure, after which the fcc phase is elastically unstable. Thus, the high-T SPT in Yb is mechanical in origin, similar to the first-order solid–liquid-phase transition.

Graphical abstract

We report results for finite temperature (T) cubic second-order elastic constant (SOEC), elastic moduli, Poisson ratio, Zener elastic anisotropy, and sound velocities for fcc and bcc ytterbium up to melting temperature. Computed results for various elastic and anisotropic parameters for both the phases and at the onset of the fcc–bcc phase transformation allowed us to discuss the role of elasticity to understand the physical mechanism operative at the structural phase transition (SPT). It is found that the spinodal and shear elastic conditions are obeyed across the SPT, but the Born criterion needs to be modified to incorporate the pressure term to encompass the SPT. From the present study, we conclude that the bcc phase is more anisotropic. The SPT in Yb is elastic, similar to the first-order solid–liquid-phase transition. It is thus proposed that the thermal stress produced in the bcc phase, together with the opposite nature of anisotropy, favors the energetically lower bcc phase and explains the mechanical stability. The computed phonon frequencies support this assertion at high-T (≡ expanded volume), which are all positive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data supporting this study's findings are available from the corresponding author upon reasonable request.

References

  1. O. Vekilova, Dissertation No. 1531, Department of Physics, Chemistry and Biology, Linkoping University, SE-581 83 Linkoping, Sweden (2013)

  2. H.L. Kagdada, P.K. Jha, P. Spiewak, K.J. Kurzydlowski, Phys. Rev. B 97, 134105 (2018)

    Article  ADS  Google Scholar 

  3. D.R.H. Jones, M.F. Ashby, Elastic Moduli (Elsevier, Amsterdam, 2019), pp.31–47

    Google Scholar 

  4. P. Yadawa, D. Singh, D. Pandey, R.R. Yadav, Open Acous. J. 2, 61 (2009)

    Article  ADS  Google Scholar 

  5. J. Zhang, J.M. McMahon, J. Mater. Sci. 56, 4266 (2021)

    Article  ADS  Google Scholar 

  6. P. Nath, J.J. Plata, J.S. Andreo, E.J. Blancas, A.M. Marques, J.F. Sanz, ACS Appl. Mater. Interfaces 13, 29843 (2021)

    Article  Google Scholar 

  7. J.Q. Wang, W.H. Wang, H.Y. Bai, J. Appl. Phys. Lett. 94, 041910 (2009)

    Article  ADS  Google Scholar 

  8. D.M. Korotin, L.D. Finkelstein, S.V. Streltsov, E.G. Gerasimov, E.Z. Kurmaev, N.V. Mushnikov, Comput. Mater. Sci. 184, 109901 (2020)

    Article  Google Scholar 

  9. Y. Wang, J.J. Wang, H. Zhang, V.R. Manga, S.L. Shang, L.Q. Chen, Z.K. Liu, J. Phys. Condens. Matter 22, 225404 (2010)

    Article  ADS  Google Scholar 

  10. C. Malica, A.D. Corso, J. Phys. Condens. Matter 33, 475901 (2021)

    Article  Google Scholar 

  11. C. Malica, A.D. Corso, J. Phys. Condens. Matter 32, 315902 (2020)

    Article  Google Scholar 

  12. M. Born, Math. Proc. Cambridge Philos. Soc. 36, 160 (1940)

    Article  ADS  Google Scholar 

  13. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Oxford U. P, Oxford, England, 1954)

    MATH  Google Scholar 

  14. X. Zhang, B. Grabowski, F. Körmann, C. Freysoldt, J. Neugebauer, Phys. Rev. B 95, 165126 (2017)

    Article  ADS  Google Scholar 

  15. D.D. Satikunvar, N.K. Bhatt, B.Y. Thakore, J. Appl. Phys. 129, 035107 (2021)

    Article  ADS  Google Scholar 

  16. J.K. Baria, Czechoslovak J. Phys. 54, 677 (2004)

    Article  ADS  Google Scholar 

  17. N. Singh, S.P. Singh, Phys. Rev. B 42, 1652 (1990)

    Article  ADS  Google Scholar 

  18. https://sites.google.com/site/eampotentials/Yb

  19. C. Stassis, C.K. Loong, C. Theisen, R.M. Nicklow, Phys. Rev. B 26, 4106 (1982)

    Article  ADS  Google Scholar 

  20. T.H.K. Barron, M.L. Klein, Proc. Phys. Soc. 85, 523 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  21. S.L. Shang, D.E. Kim, C.L. Zacherl, Y. Wang, Y. Du, Z.K. Liu, J. Appl. Phys. 112(5), 053515 (2012)

    Article  ADS  Google Scholar 

  22. X. Wu, L. Liu, W. Li, R. Wang, Q. Liu, Comput. Condensed Matter 1, 8 (2014)

    Article  Google Scholar 

  23. F. Luo, Z.C. Guo, X.L. Zhang, C.Y. Yuan, L.C. Cai, Philos. Mag. Lett. 95(4), 211 (2015)

    Article  ADS  Google Scholar 

  24. Z.L. Liu, J.H. Yang, L.C. Cai, F.Q. Jing, D. Alfè, Phys. Rev. B 83, 144113 (2011)

    Article  ADS  Google Scholar 

  25. S.L. Shang, H. Zhang, Y. Wang, Z.K. Liu, J. Phys. Condens. Matter 22(37), 375403 (2010)

    Article  Google Scholar 

  26. Y. Wang, J.J. Wang, H. Zhang, V.R. Manga, S.L. Shang, L.Q. Chen, Z.K. Liu, J. Phys. Condens. Matter 22(22), 225404 (2010)

    Article  ADS  Google Scholar 

  27. P. Vyas, N.K. Bhatt, P.R. Vyas, A.I.P. Conf, Proc. 2352, 020060 (2021)

    Google Scholar 

  28. C. Malica, A.D. Corso, J. Appl. Phys. 127, 245103 (2020)

    Article  ADS  Google Scholar 

  29. H. Zhang, C. Li, P. Djemia, R. Yang, Q. Hu, J. Mater. Sci. Technol. 45, 92 (2020)

    Article  Google Scholar 

  30. P. Giannozzi et al., J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  31. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  32. F. Birch, Phys. Rev. 71, 809 (1947)

    Article  ADS  Google Scholar 

  33. O. Gülseren, R.E. Cohen, Phys. Rev. B 65, 064103 (2002)

    Article  ADS  Google Scholar 

  34. O.L. Anderson and D.G. Isaak, in Mineral Physics and Crystallography: A Handbook of Physical Constants ed. by T.J. Ahrens (The American Geophysical Union, Washington, DC, 1995) p. 64

  35. C.A. Swenson, J. Phys. Chem. Solids 29, 1337 (1968)

    Article  ADS  Google Scholar 

  36. E.F. Wasserman, in Ferromagnetic Materials ed. by K.H.J. Bushow and E.P. Wohlfarth (Elsevier Science, Amsterdam, 1990) p. 238

  37. R. Golesorkhtabar, P. Pavone, J. Spitaler, P. Puschnig, C. Draxl, Comput. Phys. Commun. 184, 1861 (2013)

    Article  ADS  Google Scholar 

  38. R. Hill, Proc. Phys. Soc. 65, 349 (1952)

    Article  ADS  Google Scholar 

  39. E.Yu Tonkov, E.G. Ponyatovsky, Phase Transformations of Elements Under High Pressure (CRC Press LLC, 2005). ISBN 0-8493-3367-9

  40. B.B. Karki, L. Stixrude, S.J. Clark, M.C. Warren, G.J. Ackland, J. Crain, Am. Mineral. 82, 51 (1997)

    Article  ADS  Google Scholar 

  41. Z.R. Tian, W. Tong, J.Y. Wang, N.G. Duan, V.V. Krishnan, S.L. Suib, Science 274(5314), 926 (1997)

    Article  Google Scholar 

  42. C. Kittel, Introduction to Solid State Physics, 8th edn. (John Wiley and Sons, New York, 1996)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors DDS and BYT acknowledge the Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India, for providing the necessary computing facility.

Author information

Authors and Affiliations

Authors

Contributions

DDS developed formalism, performed the computations, and draft original manuscript. NKB devised the project, the main conceptual ideas, review, and editing. BYT contributed to the interpretation of results, supervision, and writing—review and editing.

Corresponding author

Correspondence to D. D. Satikunvar.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 237 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satikunvar, D.D., Bhatt, N.K. & Thakore, B.Y. Thermoelastic properties and phase diagram for rare-earth ytterbium. Eur. Phys. J. B 95, 146 (2022). https://doi.org/10.1140/epjb/s10051-022-00414-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00414-w

Navigation