Skip to main content

Advertisement

Log in

Fatigue Life Prediction Study for Vane Thermal Barrier Coatings Based on an Axisymmetric Model and Genetic Algorithm

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Thermal barrier coatings (TBCs) are widely used on turbine guide vanes (TGVs) in aero engines. The construction of a reasonable TBC fatigue life prediction model is of great significance to the development of aero engines. A 2D axisymmetric finite element model (FEM) is established, based on experimental data from a tube with a TBC. Then, a reasonable TBC life fatigue prediction model is established by combining the Manson–Coffin equation, linear cumulative damage theory, and growth characteristics of the oxide layer. The fitting problem is transformed into an optimization problem in the process of establishing the TBC fatigue life prediction model, and the coefficients of the model are solved by a genetic algorithm (GA). Finally, a strain analysis FEM for TGVs with a TBC is established, based on the master–slave model method, and TGVs coating fatigue life is predicted by a fatigue life prediction model. The results show that the maximum fatigue life prediction error for tubes with a TBC is 104.7%, which is 114.4% lower than that obtained in previous studies, and most of the coating fatigue life prediction values are distributed within 50% confidence bounds. The coating fatigue life of the TGV on the trailing edge is 1948 cycles, which is a reasonable result. The efforts of this study provide a framework to predict the coating fatigue life of aero engine hot components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D.R. Clarke and S.R. Phillpot, Thermal Barrier Coating Materials, Mater. Today, 2005, 8, p 22-29.

    Article  CAS  Google Scholar 

  2. S. Sampath, Thermal Sprayed Ceramic Coatings: Fundamental Issues and Application Considerations, Int. J. Mater. Prod. Technol., 2009, 35(3–4), p 425-448.

    Article  CAS  Google Scholar 

  3. V. Kumar and K. Balasubramanian, Progress Update on Failure Mechanisms of Advanced Thermal Barrier Coatings: A Review, Prog. Org. Coat., 2016, 90, p 54-82.

    Article  CAS  Google Scholar 

  4. R.A. Miller, Current Status of Thermal Barrier Coatings -an Overview, Surf. Coat. Technol., 1987, 30(1), p 1-11.

    Article  CAS  Google Scholar 

  5. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier and F.S. Pettit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater Sci., 2001, 46(5), p 505-553.

    Article  Google Scholar 

  6. N.P. Padture, M. Gell and E.H. Jordan, Thermal Barrier Coatings for Gas-turbine Engine Applications, Mater. Sci., 2002, 296(5566), p 280-284.

    CAS  Google Scholar 

  7. M.Y. Ali, S.Q. Nusier and G.M. Newaz, Mechanics of Damage Initiation and Growth in a TBC/Superalloy System, Int. J. Solids Struct., 2001, 38(19), p 3329-3340.

    Article  Google Scholar 

  8. K.W. Schlichting, N.P. Padture, E.H. Jordan and M. Gell, Failure Modes in Plasma-Sprayed Thermal Barrier Coatings, Mater. Sci. Eng. A., 2003, 342(1-2), p 120-130.

    Article  Google Scholar 

  9. J.S. Jiang, Z. Zou, W. Wang, X. Zhao, Y. Liu and Z. Cao, Effect of Internal Oxidation on the Interfacial Morphology and Residual Stress in air Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2018, 334, p 215-226.

    Article  CAS  Google Scholar 

  10. Y.C. Zhou, Q.X. Liu, L. Yang, D.J. Wu and W.G. Mao, Failure Mechanisms and Life Prediction of Thermal Barrier Coatings, Chin. J. Solid Mech., 2010, 31(5), p 504-531.

    CAS  Google Scholar 

  11. R.A. Miller, Oxidation-Based Model for Thermal Barrier Coating Life, J. Am. Ceram. Soc., 1984, 67(8), p 517-521.

    Article  CAS  Google Scholar 

  12. J. T. Demasi, K. D. Sheffler, M. Ortiz, Thermal Barrier Coating Life Prediction Model Development Phase I Final Report. NASA Technical Memorandum, 1989, 182230.

  13. J.A. Nesbitt, Coatings for High-Temperature Structural Materials: Trends and Opportunities, J. Electrochem. Soc., 1989, 136(5), p 1511-1527.

    Article  CAS  Google Scholar 

  14. E.A.G. Shillington and D.R. Clarke, Spalling Failure of a Thermal Barrier Coating Associated with Aluminum Depletion in the Bond-Coat, Acta Mater., 1999, 47(4), p 1297-1305.

    Article  CAS  Google Scholar 

  15. D. Renusch, M. Schorr and M. Schütze, The Role that Bond Coat Depletion of Aluminum has on the Lifetime of APS-TBC Under Oxidizing Conditions, Mater. Corros., 2008, 59(7), p 547-555.

    Article  CAS  Google Scholar 

  16. Y. Bai, C. Ding, H. Li, Z.H. Han, B.J. Ding, T.J. Wang and L. Yu, Isothermal Oxidation Behavior of Supersonic Atmospheric Plasma-Sprayed Thermal Barrier Coating System, J. Therm. Spray Technol., 2013, 22(7), p 1201-1209.

    Article  CAS  Google Scholar 

  17. T. Kaveh and P. Esmaeil, Effect of Temperature and Ceramic Bonding on BC Oxidation Behavior in Plasma-Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2018, 349, p 177-185.

    Article  Google Scholar 

  18. I. Ali, P. Sokolowski, T. Grund, L. Pawłowski and T. Lampke, Oxidation Behavior of Thermal Barrier Coating Systems with Al Interlayer Under Isothermal Loading, IOP Conf. Ser. Mater. Sci. Eng., 2018, 373(1), p 1-6.

    Google Scholar 

  19. E.P. Busso, J. Lin, S. Sakurai and M. Nakayama, A mechanistic Study of Oxidation-induced Degradation in a Plasma-Sprayed Thermal Barrier Coating System, Acta Mater., 2001, 49(9), p 1515-1528. https://doi.org/10.1016/S1359-6454(01)00060-X

    Article  CAS  Google Scholar 

  20. E.P. Busso, J. Lin and S. Sakurai, A Mechanistic Study of Oxidation-Induced Degradation in a Plasma-Sprayed Thermal Barrier Coating System., Acta Mater., 2001, 49(9), p 1529-1536. https://doi.org/10.1016/S1359-6454(01)00061-1

    Article  CAS  Google Scholar 

  21. D. Renusch, H. Echsler and S. Michael, The Role that Interacting Failure Mechanisms have on the Lifetime of APS-TBC Under Oxidizing Conditions, Mater. Sci. Forum, 2004, 461-464(3), p 729-736.

    Article  CAS  Google Scholar 

  22. Y. Liu, C. Persson and J. Wigren, Experimental and Numerical Life Prediction of Thermally Cycled Thermal Barrier Coatings, J. Therm. Spray Technol., 2004, 13(3), p 415-424.

    Article  Google Scholar 

  23. M.Y. He, J.W. Hutchinson and A.G. Evans, Simulation of Stresses and Delamination in a Plasma-sprayed Thermal Barrier System upon Thermal Cycling, Mater. Sci. Eng., A, 2003, 345(1-2), p 172-178.

    Article  Google Scholar 

  24. M. Wen, E.H. Jordon and M. Gell, Remaining Life Prediction of Thermal Barrier Coatings Based on Photoluminescence Piezo Spectroscopy Measurements, J. Eng. Gas Turbines Power, 2006, 128(3), p 610-616.

    Article  CAS  Google Scholar 

  25. T. Beck, R. Herzog, O. Trunova, M. Offermann, R.W. Steinbrech and L. Singheiser, Damage Mechanisms and Lifetime Behavior of Plasma-sprayed Thermal Barrier Coating Systems for Gas Turbines-Part II: Modeling, Surf. Coat. Technol., 2008, 202(24), p 5901-5908.

    Article  CAS  Google Scholar 

  26. H.L. Wei, X.G. Yang and H.Y. Qi, Study on Thermal Fatigue Life Prediction for Plasma Sprayed Thermal Barrier Coatings on the Surface of Turbine Vane, J. Aerospace Power, 2008, 01, p 1-8.

    Google Scholar 

  27. P. Guan, Y.T. Ai, C.W. Fei and Y.D. Yao, Thermal Fatigue Life Prediction of Thermal Barrier Coat on Nozzle Guide Vane via Master-Slave Model, Appl. Sci., 2019, 9(20), p 4357.

    Article  CAS  Google Scholar 

  28. W.G. Mao, Y.Y. Chen, Y.J. Wang et al., A Multilayer Structure Shear Lag Model Applied in the Tensile Fracture Characteristics of Supersonic Plasma Sprayed Thermal Barrier Coating Systems Based on Digital image Correlation, Surf. Coat. Technol., 2018, 350, p 211-226.

    Article  CAS  Google Scholar 

  29. M. Ahrens, R. Vaben and D. Stover, Stress Distributions in Plasma-Sprayed Thermal Barrier Coatings as a Function of Interface Roughness and Oxide Scale Thickness, Surf. Coat. Technol., 2002, 161, p 26-35.

    Article  CAS  Google Scholar 

  30. B. Zhang, K.Y. Chen and N. Baddour, Stress Models for Electron Beam-physical Vapor Deposition Thermal Barrier Coatings Using Temperature-Process-Dependent Model Parameters, J. Eur. Ceram. Soc., 2021, 41(11), p 5658-5674.

    Article  CAS  Google Scholar 

  31. Z. Che, W.B. Jia, K. Zhao and L. Fang, Comparison of Stress Evolution Under TGO Growth Simulated by two Different Methods in Thermal Barrier Coatings, Ceram. Int., 2020, 46(3), p 2915-2922.

    Article  Google Scholar 

  32. L. Wang, C. Deng, K.Y. Ding, S.Q. Guo and X.P. Lin, Model Construction and Effect of Thermally Grown Oxide Dynamic Growth on Distribution of Thermal Barrier Coatings, Ceram. Int., 2021, 47(13), p 18385-18396.

    Article  CAS  Google Scholar 

  33. S Sjöström, B Hakan, J Magnus. Prediction of the Fatigue Life of Thermal Barrier Coatings in Gas Turbines: Modelling and Experimental Verification. American Society of Mechanical Engineers, 2003.

  34. L. Wang, Q. Fan, Y. Liu et al., Simulation of Damage and Failure Processes of Thermal Barrier Coatings Subjected to a Uniaxial Tensile Load, Mater. Des., 2015, 86, p 89-97.

    Article  Google Scholar 

  35. Y. Yao, Y. Ai, P. Guan et al., Thermal Fatigue Life Predication of Thermal Barrier Coatings by 3D Hill-like Model and GA, Surf. Coat. Technol., 2021, 426, 127771.

    Article  CAS  Google Scholar 

  36. X.G. Yang, R. Geng and Y.P. Zhou, An Experimental Study of Oxidation and Thermal Fatigue of TBC, J. Aerospace Power, 2003, 2, p 195-200.

    Google Scholar 

  37. X.G. Yang, R. Geng and Y.P. Zhou, A Study of Thermal Fatigue Life Prediction of TBC, J. Aerospace Power, 2003, 2, p 201-205.

    Google Scholar 

  38. M. Ranjbar-far, J. Absi, G. Mariaux et al., Simulation of the Effect of Material Properties and Interface Roughness on the Stress Distribution in Thermal Barrier Coatings using Finite Element Method, Mater. Des., 2010, 31, p 772-781.

    Article  CAS  Google Scholar 

  39. H. Evans, Oxidation Failure of TBC Systems: an Assessment of Mechanisms, Surf. Coat. Technol., 2011, 206, p 1512-1521.

    Article  CAS  Google Scholar 

  40. J.N. Song, S.L. Li, X.G. Yang, D.Q. Shi and H.Y. Qi, Numerical Study on the Competitive Cracking Behavior in TC and Interface for Thermal Barrier Coatings under Thermal Cycle Fatigue Loading, Surf. Coat. Technol., 2019, 358, p 850-857.

    Article  CAS  Google Scholar 

  41. J.N. Song, H.Y. Qi, D.Q. Shi, X.G. Yang and S.L. Li, Effect of Non-uniform Growth of TGO Layer on Cracking Behaviors in Thermal Barrier Coatings: a Numerical Study, Surf. Coat. Technol., 2019, 370, p 113-124.

    Article  CAS  Google Scholar 

  42. J.N. Song, S.L. Li, X.G. Yang, H.Y. Qi and D.Q. Shi, Numerical Investigation on the Cracking Behaviors of Thermal Barrier Coating System under Different Thermal Cycle Loading Waveforms, Surf. Coat. Technol., 2018, 349, p 166-176.

    Article  CAS  Google Scholar 

  43. W. Zhu, M. Cai, L. Yang, J.W. Guo, Y.C. Zhou and C. Lu, The Effect of Morphology of Thermally Grown Oxide on the Stress Field in a Turbine Blade with Thermal Barrier Coatings, Surf. Coat. Technol., 2015, 276, p 160-167.

    Article  CAS  Google Scholar 

  44. Editorial Committee of China Aviation Materials Manual 2001 Handbook of Aeronautical Materials of China (Volume II) wrought and cast superalloys. China Standard Press Beijing 765 771

  45. B.W. Veal, A.P. Paulikas and P.Y. Hou, Tensile Stress and Creep in Thermally Grown Oxide, Nat. Mater., 2006, 5, p 349-351.

    Article  CAS  Google Scholar 

  46. D. Pan, M.W. Chen, P.K. Wright and K.J. Hemker, Evolution of a Diffusion Aluminide Bond Coat for Thermal Barrier Coatings During Thermal Cycling, Acta Mater., 2003, 51(8), p 2205-2217.

    Article  CAS  Google Scholar 

  47. M. Bialas, Finite element analysis of stress distribution in thermal barrier coatings, Surf. Coat. Technol., 2008, 202(24), p 6002-6010.

    Article  CAS  Google Scholar 

  48. HW Liu 2004 Mechanics of materials Higher Education Press Beijing 231 234

  49. S.S. Manson, Fatigue: A Complex Subject Some Simple Approximations, Exper. Mech., 1965, 5(7), p 193-226.

    Article  Google Scholar 

  50. M.A. Miner, Cumulative Damage in Fatigue, J. Appl. Mech., 1945, 12(3), p 159-164.

    Article  Google Scholar 

  51. J.H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, 2nd ed. MIT Press, Cambridge, 1992.

    Book  Google Scholar 

  52. A. Rabiei and A.G. Evans, Failure Mechanism Associated with the Thermally Grown Oxide in Plasma-Sprayed Thermal Barrier Coatings, Acta Mater., 2000, 48(15), p 3963-3976.

    Article  CAS  Google Scholar 

  53. Y.D. Yao, Y.T. Ai, C. Song, P. Guan and J. Tian, Study on the Prediction of Dangerous Point by Biaxial Stress State Analysis for Thermal Barrier Coating, Acta Aeronaut. Astronaut. Sin., 2021, 42(9), p 424937.

    Google Scholar 

  54. R. Darolia, Thermal Barrier Coatings Technology: Critical Review, Progress Update, Remaining Challenges and Prospects, Int. Mater. Rev., 2013, 58(6), p 315-348.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Guan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, P., He, JN., Zhang, JR. et al. Fatigue Life Prediction Study for Vane Thermal Barrier Coatings Based on an Axisymmetric Model and Genetic Algorithm. J Therm Spray Tech 31, 2327–2341 (2022). https://doi.org/10.1007/s11666-022-01453-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01453-6

Keywords

Navigation