Skip to main content
Log in

Mechanisms of Magnetoelectric Effects in Oxide Multiferroics with a Perovskite Praphase

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Magnetoelectric effects in multiferroics with a perovskite structure, such as bismuth ferrite, rare-earth orthochromites, and Ruddlesden–Popper structures belonging to the trigonal, orthorhombic, and tetragonal systems are discussed. The influence of structural distortions on magnetic and ferroelectric properties is studied; possible magnetoelectric linear, quadratic, nonuniform effects are determined in these materials; and the expressions for the linear magnetoelectric effect tensor are presented. The macroscopic manifestations of the nonuniform magnetoelectric effect in nanoelements based on multiferroics are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. S. Manipatruni, D. E. Nikonov, C.-C. Lin, T. A. Gosavi, H. Liu, B. Prasad, Y.-L. Huang, E. Bonturim, R. Ramesh, and I. A. Young, Nature (London, U.K.) 565, 35 (2019).

    Article  ADS  Google Scholar 

  2. J. F. Scott and J. Floyd, npj Comput. Mater. 1, 1 (2015).

    Google Scholar 

  3. B. Sun, G. Zhou, L. Sun, H. B. Zhao, Y. Chen, F. Yang, Y. Zhao, and Q. L. Song, Nanoscale Horizons 6, 939 (2021).

    Article  ADS  Google Scholar 

  4. A. A. Bukharaev, A. K. Zvezdin, A. P. Pyatakov, and Yu. K. Fetisov, Phys. Usp. 61, 1175 (2018).

    Article  ADS  Google Scholar 

  5. C. N. R. Rao, A. Sundaresan, and R. Saha, J. Phys. Chem. Lett. 3, 2237 (2012).

    Article  Google Scholar 

  6. A. M. Shikin, D. A. Estyunin, N. L. Zaitsev, D. Glazkova, I. I. Klimovskikh, S. O. Filnov, A. G. Rybkin, E. F. Schwier, S. Kumar, A. Kimura, N. Mamedov, Z. Aliev, M. B. Babanly, K. Kokh, O. E. Tereshchenko, et al., Phys. Rev. B 104, 115168 (2021).

    Article  ADS  Google Scholar 

  7. A. B. Harris, Phys. Rev. B 84, 064116 (2011).

    Article  ADS  Google Scholar 

  8. P. Sahlot, A. Jana, and A. M. Awasthi, AIP Conf. Proc. 1942, 130009 (2018).

    Article  Google Scholar 

  9. M. V. Lobanov, M. Greenblatt, E. ad N. Caspi, J. D. Jorgensen, D. V. Sheptyakov, B. H. Toby, C. E. Botez, and P. W. Stephens, J. Phys.: Condens. Matter 16, 5339 (2004).

    ADS  Google Scholar 

  10. B. H. Zhang, Z. Z. Hu, B. H. Chen, X. Q. Liu, and X. M. Chen, J. Appl. Phys. 128, 054102 (2020).

    Article  ADS  Google Scholar 

  11. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, Sov. Phys. Solid State 2, 2651 (1960).

    Google Scholar 

  12. G. A. Smolenskii and I. E. Chupis, Sov. Phys. Usp. 25, 475 (1982).

    Article  ADS  Google Scholar 

  13. Z. Gabbasova, M. Kuz’min, A. Zvezdin, I. Dubenko, V. Murashov, D. Rakov, and I. Krynetsky, Phys. Lett. A 158, 491 (1991).

    Article  ADS  Google Scholar 

  14. J. Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A. P. Pyatakov, A. K. Zvezdin, and D. Viehland, Appl. Phys. Lett. 84, 5261 (2004).

    Article  ADS  Google Scholar 

  15. A. P. Pyatakov and A. K. Zvezdin, Phys. Usp. 55, 557 (2012).

    Article  ADS  Google Scholar 

  16. N. E. Kulagin, A. F. Popkov, and A. K. Zvezdin, Phys. Solid State 53, 970 (2011).

    Article  ADS  Google Scholar 

  17. Z. Gareeva, O. Diéguez, J. Iñiguez, and A. K. Zvezdin, Phys. Rev. B 91, 060404 (2015).

    Article  ADS  Google Scholar 

  18. A. F. Popkov, M. D. Davydova, K. A. Zvezdin, S. V. Solov’yov, and A. K. Zvezdin, Phys. Rev. B 93, 094435 (2016).

    Article  ADS  Google Scholar 

  19. M. Lorenz, G. Wagner, V. Lazenka, P. Schwinkendorf, H. Modarresi, M. J. van Bael, A. Vantomme, K. Temst, O. Oeckler, and M. Grundmann, Appl. Phys. Lett. 106, 012905 (2015).

    Article  ADS  Google Scholar 

  20. D. So, A. Agbelele, D. Rahmedov, J. Liu, P. Rovillain, C. Toulouse, I. C. Infante, A. P. Pyatakov, S. Fusil, E. Jacquet, C. Carrétéro, C. Deranlot, S. Lisenkov, D. Wang, J.-M. le Breton, et al., Nat. Mater. 12, 641 (2013).

    Article  ADS  Google Scholar 

  21. V. A. Murashov, D. N. Rakov, I. S. Dubenko, A. K. Zvezdin, and V. M. Ionov, Sov. Phys. Crystallogr. 35, 538 (1990).

    Google Scholar 

  22. A. Kadomtseva, Yu. F. Popov, T. V. Schogoleva, G. P. Vorob’ev, A. K. Zvezdin, V. A. Murashov, and D. N. Rakov, Ferroelectrics 169, 85 (1995).

    Article  Google Scholar 

  23. G. P. Vorob’ev, A. K. Zvezdin, A. M. Kadomtseva, Yu. F. Popov, V. A. Murashov, and D. N. Rakov, Phys. Solid State 37, 1793 (1995).

    ADS  Google Scholar 

  24. G. P. Vorob’ev, A. K. Zvezdin, A. M. Kadomtseva, Yu. F. Popov, V. A. Murashov, and Yu. P. Chernenkov, Phys. Solid State 37, 1329 (1995).

    ADS  Google Scholar 

  25. V. A. Murashov, D. N. Rakov, N. A. Ekonomov, A. K. Zvezdin, and I. S. Dubenko, Sov. Phys. Solid State 32, 1255 (1990).

    Google Scholar 

  26. V. S. Pokatilov, A. S. Sigov, A. O. Konovalova, A. Gippius, and N. Gervits, Fundam. Probl. Radioelektron. Priborostr. 10, 366 (2010).

    Google Scholar 

  27. V. S. Rusakov, V. S. Pokatilov, A. S. Sigov, A. A. Belik, and M. E. Matsnev, Phys. Solid State 61, 1030 (2019).

    Article  ADS  Google Scholar 

  28. J. Chen, L. Liu, X. L. Zhu, Z. V. Gareeva, A. K. Zvezdin, and X. M. Chen, Appl. Phys. Lett. 119, 112901 (2021).

    Article  ADS  Google Scholar 

  29. A. K. Zvezdin and A. A. Mukhin, JETP Lett. 88, 505 (2008).

    Article  ADS  Google Scholar 

  30. Y. Tokunaga, S. Iguchi, T. H. Arima, and Y. Tokura, Phys. Rev. Lett. 101, 097205 (2008).

    Article  ADS  Google Scholar 

  31. Z. Gareeva, A. Zvezdin, K. Zvezdin, and X. Chen, Materials 15, 574 (2022).

    Article  ADS  Google Scholar 

  32. K. P. Belov, A. K. Zvezdin, A. M. Kadomtseva, and R. Z. Levitin, Orientation Transitions in Rare-Earth Magnetics (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  33. E. A. Turov, A. V. Kolchanov, V. V. Men’shenin, I. F. Mirsaev, and V. V. Nikolaev, Symmetry and Physical Properties of Antiferromagnets (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  34. B. Rajeswaran, D. I. Khomskii, A. K. Zvezdin, C. N. R. Rao, and A. Sundaresan, Phys. Rev. B 86, 214409 (2012).

    Article  ADS  Google Scholar 

  35. V. A. Sanina, B. Kh. Khannanov, E. I. Golovenchits, and M. P. Shcheglov, Phys. Solid State 61, 370 (2019).

    Article  ADS  Google Scholar 

  36. V. A. Sanina, B. Kh. Khannanov, E. I. Golovenchits, and M. P. Shcheglov, Phys. Solid State 60, 2532 (2018).

    Article  ADS  Google Scholar 

  37. A. K. Zvezdin, Z. V. Gareeva, and X. M. Chen, J. Phys.: Condens. Matter 33, 385801 (2021).

    ADS  Google Scholar 

  38. M. J. Pitcher, P. Mandal, M. S. Dyer, J. Alaria, P. Borisov, H. Niu, J. B. Claridge, and M. J. Rosseinsky, Science (Washintgon, DC, U. S.) 347, 420 (2015).

    Article  ADS  Google Scholar 

  39. M. J. Donahue and D. G. Porter, OOMMF User’s Guide, Version 1.0, NIST IR 6376 (Natl. Inst. Stand. Technol., Gaithersburg, MD, 1999).

  40. T. Z. Wang and Y. H. Zhou, J. Appl. Phys. 108, 123905 (2010).

    Article  ADS  Google Scholar 

  41. J. Zhang and Y. Gao, Int. J. Solids Struct. 69–70, 291 (2015).

    Article  Google Scholar 

  42. X. Liu, W. Song, M. Wu, Y. Yang, Y. Yang, P. Lu, Y. Tian, Y. Sun, J. Lu, J. Wang, D. Yan, Y. Shi, N. X. Sun, Y. Sun, P. Gao, et al., Nat. Commun. 12, 5453 (2021).

    Article  ADS  Google Scholar 

  43. Z. Hou, Y. Wang, X. Lan, S. Li, X. Wan, F. Meng, Y. Hu, Z. Fan, C. Feng, M. Qin, M. Zeng, Xi. Zhang, X. Liu, X. Fu, G. Yu, G. Zhou, Y. Zhou, W. Zhao, X. Gao, and J.-M. Liu, Adv. Mater. 34, 2270090 (2022).

    Article  Google Scholar 

  44. K. S. Antipin, T. T. Gareev, N. V. Myasnikov, E. P. Nikolaeva, and A. P. Pyatakov, J. Appl. Phys. 129, 024103 (2021).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Higher E-ducation and Science, the Russian Foundation for Basic Research (project no. 19-52-80024), National Natural Science Foundation of China (Grant no. 51961145105), state task for the scientific studies by Laboratories (order MN-8/1356 from 20.09.2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. V. Gareeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gareeva, Z.V., Zvezdin, A.K., Shul’ga, N.V. et al. Mechanisms of Magnetoelectric Effects in Oxide Multiferroics with a Perovskite Praphase. Phys. Solid State 64, 248–254 (2022). https://doi.org/10.1134/S1063783422060038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783422060038

Keywords:

Navigation