Skip to main content
Log in

Specific Features of Synthesis, Structure, Magnetometry, and NMR Spectroscopy of Different-Type Nanowires

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Nanowires of different types (homogeneous (made of iron) and heterogeneous (layered)), obtained by the template synthesis method, have been investigated. A technique for preparation of layered nanowire arrays with alternating thin layers of magnetic and nonmagnetic metals (Co/Cu and Ni/Cu) has been developed and described. Microscopy methods (SEM and TEM with elemental analysis) are used to study topography of the obtained structures, nanowire diameters, individual-layer thicknesses, and specific features of layer interfaces. Several ways of synthesis of nanowires with thin layers and sharp interfaces are proposed: dilution of electrolyte, use of a reference electrode, and monitoring of the charge passage. Layered nanowires are investigated by magnetometry; it is shown that the magnetic properties of a layered nanowire array (in particular, direction of the easy magnetization axis in the Co/Cu nanowire array) depend not only on the aspect ratio of the magnetic layer but also on the thickness ratio between the magnetic-metal layer and the nonmagnetic spacer (copper interlayer). Nanowires of the two types are studied using the nuclear magnetic resonance (NMR) method. Layered Co/Cu structures are analyzed by 59Co NMR: it is shown that nanowires with smaller-thickness layers (and, accordingly, with a larger contribution from the interfaces) are characterized by a larger fraction of Co atoms coordinated by Cu atoms. The large fraction of the Cu-coordinated atoms suggests that copper impurity enters cobalt layers. Homogeneous nanowires made of iron are compared with bulk iron samples (57Fe NMR). The line is found to be shifted to higher frequencies (by 0.3 MHz), which is indicative of an increase in the field by about 0.2 T. A significant line broadening and a decrease in the spin–lattice relaxation time may indicate that there is a large dispersion between the local magnetic field values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. H. Masuda and K. Fukuda, Science (Washington, DC, U. S.) 268 (2321), 1466 (1995).

    Article  ADS  Google Scholar 

  2. C. R. Martin, Science (Washington, DC, U. S.) 266 (5193), 1961 (1994).

    Article  ADS  Google Scholar 

  3. N. Lupu, Electrodeposited Nanowires and their Applications (InTech, Croatia, 2010).

    Book  Google Scholar 

  4. M. Vazquez, Magnetic Nano- and Microwires: Design, Synthesis, Properties and Applications (Elsevier-Woodhead, Amsterdam, 2015).

    Google Scholar 

  5. A. A. Davydov and V. M. Volgin, Russ. J. Electrochem. 52, 806 (2016).

    Article  Google Scholar 

  6. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen van Dau, and F. Pettroff, Phys. Rev. Lett. 61, 2472 (1988).

    Article  ADS  Google Scholar 

  7. A. Fert and L. Piraux, J. Magn. Magn. Mater. 200, 338 (1999).

    Article  ADS  Google Scholar 

  8. H. Kamimura, M. Hayashida, and T. Ohgai, Nanomater. 10, 5 (2020).

    Article  Google Scholar 

  9. Y. P. Ivanov, A. Chuvilin, S. Lopatin, and J. Kosel, ACS Nano 10, 5326 (2016).

    Article  Google Scholar 

  10. D. Ceballos, E. Cisternas, and E. E. Vogel, J. Magn. Magn. Mater. 451, 676 (2018).

    Article  ADS  Google Scholar 

  11. S. Moraes, D. Navas, F. Béron, M. P. Proenca, K. R. Pirota, C. T. Sousa, and J. P. Araújo, Nanomaterials 8, 490 (2018).

    Article  Google Scholar 

  12. D. A. Cherkasov, D. L. Zagorskii, R. I. Khaibullin, A. E. Muslimov, and I. M. Doludenko, Phys. Solid State 62, 1695 (2020).

    Article  ADS  Google Scholar 

  13. Yu. V. Gulyaev, S. G. Chigarev, A. I. Panas, E. A. Vilkov, N. A. Maksimov, D. L. Zagorskii, and A. S. Shatalov, Tech. Phys. Lett. 45, 271 (2019).

    Article  ADS  Google Scholar 

  14. I. M. Doludenko, A. V. Mikheev, I. A. Burmistrov, D. B. Trushina, T. N. Borodina, T. V. Bukreeva, and D. L. Zagorskii, Tech. Phys. 65, 1377 (2020).

    Article  Google Scholar 

  15. K. V. Frolov, D. L. Zagorskii, I. S. Lyubutin, M. A. Chuev, I. V. Perunov, S. A. Bedin, A. A. Lomov, V. V. Artemov, and S. N. Sul’yanov, JETP Lett. 105, 319 (2017).

    Article  ADS  Google Scholar 

  16. D. L. Zagorskii, K. V. Frolov, S. A. Bedin, I. V. Perunov, M. A. Chuev, A. A. Lomov, and I. M. Doludenko, Phys. Solid State 60, 2115 (2018).

    Article  ADS  Google Scholar 

  17. V. Scarani, B. Doudin, and J.-P. Ansermet, J. Magn. Magn. Mater. 205, 241 (1999).

    Article  ADS  Google Scholar 

  18. S. Chuprakov, I. Blinov, D. Zagorskii, and D. Cherkasov, Phys. Met. Metallogr. 122, 869 (2021).

    Article  ADS  Google Scholar 

  19. D. K. Nurgaliev and P. G. Yasonov, RF Patent on Useful Model No. 81805, Byull. FIPS, No. 9 (2009).

  20. S. V. Zhurenko, A. V. Tkachev, A. V. Gunbin, and A. A. Gippius, Instrum. Exp. Tech. 64, 427 (2021).

    Article  Google Scholar 

  21. A. A. Gippius, S. V. Zhurenko, and A. V. Tkachev, Experimental Low-Temperature NMR Spectroscopy of the Condensed State (Mosk. Gos. Univ., Moscow, 2021) [in Russian].

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation within a grant for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences (project no. 22-22-00983).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Zagorskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zagorskii, D.L., Doludenko, I.M., Khaibullin, R.I. et al. Specific Features of Synthesis, Structure, Magnetometry, and NMR Spectroscopy of Different-Type Nanowires. Phys. Solid State 64, 283–291 (2022). https://doi.org/10.1134/S1063783422060087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783422060087

Keywords:

Navigation