Skip to main content

Advertisement

Log in

Effects of Thymoquinone on Adipocyte Differentiation in Human Adipose-Derived Stem Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Inhibition of adipocyte differentiation would be a key strategy to control obesity. Human adipose tissue-derived stem cells (ADSCs) are a promising tool for adipocyte differentiation research. Thymoquinone (TQ) as a potent antioxidant molecule may inhibit adipocyte differentiation. Herein, we aim to investigate the inhibitory effect of TQ on lipid differentiation in ADSCs. Quantification of cell surface markers was used by Flow-Cytometry and the effect of TQ on cell viability was assessed using the AlamarBlue test. ADSCs were subjected to induction of differentiation in the presence of non-cytotoxic concentrations of TQ (6.25, 12.5 and 25 μg/mL). Lipid accumulation was assessed using the Oil-Red O staining technique. Moreover, the expression of PPARγ (Peroxisome proliferator-activated receptor-γ) and FAS (Fatty Acid Synthetase) proteins was evaluated using Western blotting. Flow-cytometry demonstrated the expression of CD44, CD90, and CD73 as mesenchymal stem cell markers on the cell surface. At concentrations ≤100 μg/mL of TQ, no significant difference in cell viability was observed compared to the control. Lipid accumulation in ADSCs significantly decreased at 25 μg/mL (P < 0.001) and 12.5 μg/mL (P < 0.01) of TQ. The findings of the qualitative examination of Lipid Droplets also confirmed these results. Western-blot showed that TQ at 12.5 (p < 0.05) and 25 μg/mL (p < 0.01) reduced FAS/β-actin ratio compared to the positive group. TQ also decreased the expression of PPARγ at 6.25 μg/mL but not at higher concentrations. In conclusion, TQ may reduce differentiation of fat stem cells into fat cells through inhibition of the expression of PPARγ and FAS proteins and might be a potential anti-obesity compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PPARγ:

Peroxisome proliferator receptor gamma

GAPDH:

Glyceraldehyde phosphate dehydrogenase

FAS:

Fatty Acid Synthetase

TQ:

Thymoquinone

ADSCs:

Adipose tissue-derived stem cells

WAT:

White adipose tissue

BAT:

Brown adipose tissue

SVF:

Stromal vascular fraction

PBS:

Phosphate buffered saline

DMEM:

Dulbecco’s Modified Eagle’s Medium

DMC:

Differentiation medium cocktail

ECL:

Enhanced Chemiluminescent

LDL:

Low-density lipoprotein

HIF1α:

Hypoxia-inducible factor 1α

GSIS:

Stimulated insulin secretion

References

  1. Okla, M., Kang, I., Kim, D. M., Gourineni, V., Shay, N., Gu, L., & Chung, S. (2015). Ellagic acid modulates lipid accumulation in primary human adipocytes and human hepatoma Huh7 cells via discrete mechanisms. Journal of Nutritional Biochemistry, 26, 82–90.

    Article  CAS  PubMed  Google Scholar 

  2. Li, Y., Rong, Y., Bao, L., Nie, B., Ren, G., Zheng, C., Amin, R., Arnold, R. D., Jeganathan, R. B., & Huggins, K. W. (2017). Suppression of adipocyte differentiation and lipid accumulation by stearidonic acid (SDA) in 3T3-L1 cells. Lipids Health Dis, 16, 1–10.

    Article  Google Scholar 

  3. Jafari, F., Emami, S. A., Javadi, B., Salmasi, Z., Tayarani-Najjaran, M., & Tayarani-Najaran, Z. (2022). Inhibitory effect of saffron, crocin, crocetin, and safranal against adipocyte differentiation in human adipose-derived stem cells. Journal of Ethnopharmacology, 294, 115340.

    Article  CAS  PubMed  Google Scholar 

  4. Muir, L. A., Neeley, C. K., Meyer, K. A., Baker, N. A., Brosius, A. M., Washabaugh, A. R., Varban, O. A., Finks, J. F., Zamarron, B. F., & Flesher, C. G. (2016). Adipose tissue fibrosis, hypertrophy, and hyperplasia: Correlations with diabetes in human obesity. Obesity, 24, 597–605.

    Article  CAS  PubMed  Google Scholar 

  5. Ruiz-Ojeda, F. J., Rupérez, A. I., Gomez-Llorente, C., Gil, A., & Aguilera, C. M. (2016). Cell models and their application for studying adipogenic differentiation in relation to obesity: a review. International Journal of Molecular Sciences, 17, 1040.

    Article  PubMed Central  Google Scholar 

  6. Moseti, D., Regassa, A., & Kim, W.-K. (2016). Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. International Journal Molecular Sciences, 17, 124.

    Article  Google Scholar 

  7. Sugimoto, R., Ishibashi-Ohgo, N., Atsuji, K., Miwa, Y., Iwata, O., Nakashima, A., & Suzuki, K. (2018). Euglena extract suppresses adipocyte-differentiation in human adipose-derived stem cells. PloS one, 13, e0192404.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Konno, M., Hamabe, A., Hasegawa, S., Ogawa, H., Fukusumi, T., Nishikawa, S., Ohta, K., Kano, Y., Ozaki, M., & Noguchi, Y. (2013). Adipose‐derived mesenchymal stem cells and regenerative medicine. Dev Growth Differ, 55, 309–318.

    Article  CAS  PubMed  Google Scholar 

  9. Lee, M.-J., & Fried, S. (2014). Optimal protocol for the differentiation and metabolic analysis of human adipose stromal cells. Meth Enzymol, 538, 49–65.

    Article  CAS  Google Scholar 

  10. Park, M., Sharma, A., & Lee, H.-J. (2019). Anti-adipogenic effects of delphinidin-3-O-β-glucoside in 3T3-L1 preadipocytes and primary white adipocytes. Molecules, 24, 1848.

    Article  CAS  PubMed Central  Google Scholar 

  11. Aqili Khorasani MH, Qarabadin-e-Kabir. 2007, Tehran: Research Institute for Islamic and Complementary Medicine (RICM).

  12. Razi, M. Z. (1968). Al-Hawi fi’l-Tibb (Comprehensive Book of Medicine). Hyderabad: Osmania Oriental Publications Bureau.

    Google Scholar 

  13. Razavi, B., & Hosseinzadeh, H. (2014). A review of the effects of Nigella sativa L. and its constituent, thymoquinone, in metabolic syndrome. Journal of Endocrinological Investigation, 37, 1031–1040.

    Article  CAS  PubMed  Google Scholar 

  14. Karandrea, S., Yin, H., Liang, X., Slitt, A. L., & Heart, E. A. (2017). Thymoquinone ameliorates diabetic phenotype in Diet-Induced Obesity mice via activation of SIRT-1-dependent pathways. PloS one, 12, e0185374.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mohebbati, R., & Abbasnezhad, A. (2020). Effects of Nigella sativa on endothelial dysfunction in diabetes mellitus: a review. Journal of Ethnopharmacology, 252, 112585.

    Article  CAS  PubMed  Google Scholar 

  16. Parlar, A., & Arslan, S. O. (2019). Thymoquinone exhibits anti-inflammatory, antioxidant, and immunomodulatory effects on allergic airway inflammation. Archives of Clinical Experimental Medicine, 4, 60–65.

    Google Scholar 

  17. Pei, Z.-W., Guo, Y., Zhu, H.-L., Dong, M., Zhang, Q., & Wang, F. (2020) Thymoquinone protects against hyperlipidemia-induced cardiac damage in low-density lipoprotein receptor-deficient (LDL-R-/-) mice via its anti-inflammatory and antipyroptotic effects. BioMed Research International, 2020.

  18. Wilson, A., Chee, M., Butler, P., & Boyd, A.S. (2019) Isolation and characterisation of human adipose-derived stem cells, in Immunological tolerance. 2019, Springer. 3–13.

  19. Ong, W. K., Tan, C. S., Chan, K. L., Goesantoso, G. G., Chan, X. H. D., Chan, E., Yin, J., Yeo, C. R., Khoo, C. M., & So, J. B. Y. (2014). Identification of specific cell-surface markers of adipose-derived stem cells from subcutaneous and visceral fat depots. Stem Cell Reports, 2, 171–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blüher, M. (2019). Obesity: global epidemiology and pathogenesis. Nature Reviews Endocrinology, 15, 288–298.

    Article  PubMed  Google Scholar 

  21. Namazi, N., Larijani, B., Ayati, M. H., & Abdollahi, M. (2018). The effects of Nigella sativa L. on obesity: a systematic review and meta-analysis. J Ethnopharmacology, 219, 173–181.

    Article  CAS  PubMed  Google Scholar 

  22. Asgary, S., Ghannadi, A., Dashti, G., Helalat, A., Sahebkar, A., & Najafi, S. (2013). Nigella sativa L. improves lipid profile and prevents atherosclerosis: Evidence from an experimental study on hypercholesterolemic rabbits. Journal of Functional Foods, 5, 228–234.

    Article  CAS  Google Scholar 

  23. Mahmoodi, M.R. & Mohammadizadeh, M. (2020) Therapeutic potentials of Nigella sativa preparations and its constituents in the management of diabetes and its complications in experimental animals and patients with diabetes mellitus: a systematic review. Complementary Therepies in Medicine, 102391.

  24. Ahmad, S., & Beg, Z. H. (2013). Hypolipidemic and antioxidant activities of thymoquinone and limonene in atherogenic suspension fed rats. Food Chemistry, 138, 1116–1124.

    Article  CAS  PubMed  Google Scholar 

  25. AL‐NAQEEB, G., & Ismail, M. (2009). Regulation of apolipoprotein A‐1 and apolipoprotein B100 genes by thymoquinone rich fraction and thymoquinone in HepG2 cells. Journal of Food Lipids, 16, 245–258.

    Article  Google Scholar 

  26. Mahmoud, Y. K., & Abdelrazek, H. M. (2019). Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy. Biomedicine & Pharmacotherapy, 115, 108783.

    Article  CAS  Google Scholar 

  27. Harphoush, S., Wu, G., Qiuli, G., Zaitoun, M., Ghanem, M., Shi, Y., & Le, G. (2019). Thymoquinone ameliorates obesity-induced metabolic dysfunction, improves reproductive efficiency exhibiting a dose-organ relationship. Systems Biology in Reproduction Medicine, 65, 367–382.

    Article  CAS  Google Scholar 

  28. Rampersad, S. N. (2012). Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors, 12, 12347–12360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Imran, M., Rauf, A., Khan, I. A., Shahbaz, M., Qaisrani, T. B., Fatmawati, S., Abu-Izneid, T., Imran, A., Rahman, K. U., & Gondal, T. A. (2018). Thymoquinone: a novel strategy to combat cancer: a review. Biomedicine & Pharmacotherapy, 106, 390–402.

    Article  CAS  Google Scholar 

  30. Darakhshan, S., Pour, A. B., Colagar, A. H., & Sisakhtnezhad, S. (2015). Thymoquinone and its therapeutic potentials. Pharmacological Research, 95, 138–158.

    Article  PubMed  Google Scholar 

  31. Yadav, A. K., & Jang, B.-C. (2021). Inhibition of lipid accumulation and cyclooxygenase-2 expression in differentiating 3T3-L1 preadipocytes by pazopanib, a multikinase inhibitor. International Journal of Molecular Sciences, 22, 4884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, X., Luo, Y., Wang, C., Ding, X., Yang, X., Wu, D., Silva, F., Yang, Z., Zhou, Q., & Wang, L. (2018). Adipose mTORC1 suppresses prostaglandin signaling and beige adipogenesis via the CRTC2-COX-2 pathway. Cell Reports, 24, 3180–3193.

    Article  CAS  PubMed  Google Scholar 

  33. Kohandel, Z., Farkhondeh, T., Aschner, M., & Samarghandian, S. (2021). Anti-inflammatory effects of thymoquinone and its protective effects against several diseases. Biomedicine Pharmacotherapy, 138, 111492.

    Article  CAS  PubMed  Google Scholar 

  34. Hsu, H. H., Chen, M. C., Day, C. H., Lin, Y. M., Li, S. Y., Tu, C. C., Padma, V.V., Shih, H. N., Kuo, W. W., & Huang, C. Y. (2017) Thymoquinone suppresses migration of LoVo human colon cancer cells by reducing prostaglandin E2 induced COX-2 activation. World journal of gastroenterology, 23,1171.

  35. Kraus, N. A., Ehebauer, F., Zapp, B., Rudolphi, B., Kraus, B. J., & Kraus, D. (2016). Quantitative assessment of adipocyte differentiation in cell culture. Adipocyte, 5, 351–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shen, H. H., Peterson, S. J., Bellner, L., Choudhary, A., Levy, L., Gancz, L., Sasson, A., Trainer, J., Rezzani, R., & Resnick, A. (2020). Cold-Pressed Nigella Sativa Oil Standardized to 3% Thymoquinone Potentiates Omega-3 Protection against Obesity-Induced Oxidative Stress, Inflammation, and Markers of Insulin Resistance Accompanied with Conversion of White to Beige Fat in Mice. Antioxidants, 9, 489.

    Article  CAS  PubMed Central  Google Scholar 

  37. Chen, L., Chen, R., Wang, H., & Liang, F. (2015) Mechanisms linking inflammation to insulin resistance. International Journal of Endocrinology, 2015.

  38. Ronnett, G. V., Kim, E.-K., Landree, L. E., & Tu, Y. (2005). Fatty acid metabolism as a target for obesity treatment. Physiology & Behaviour, 85, 25–35.

    Article  CAS  Google Scholar 

  39. Gray, J. P., Zayasbazan Burgos, D., Yuan, T., Seeram, N., Rebar, R., Follmer, R., & Heart, E. A. (2016). Thymoquinone, a bioactive component of Nigella sativa, normalizes insulin secretion from pancreatic β-cells under glucose overload via regulation of malonyl-CoA. American Journal of Physiology Endocrinology and Metabolism, 310, E394–E404.

    Article  PubMed  Google Scholar 

  40. Lee, J. M., Choi, S. S., Lee, Y. H., Khim, K. W., Yoon, S., Kim, B.-G., Nam, D., Suh, P.-G., Myung, K., & Choi, J. H. (2018). The E3 ubiquitin ligase TRIM25 regulates adipocyte differentiation via proteasome-mediated degradation of PPARγ. Experimental and Molecular Medicine, 50, 1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hong, F., Pan, S., Guo, Y., Xu, P., & Zhai, Y. (2019). PPARs as nuclear receptors for nutrient and energy metabolism. Molecules, 24, 2545.

    Article  CAS  PubMed Central  Google Scholar 

  42. Gross, B., Pawlak, M., Lefebvre, P., & Staels, B. (2017). PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nature Reviews Endocrinology, 13, 36.

    Article  CAS  PubMed  Google Scholar 

  43. Woo, C. C., Loo, S. Y., Gee, V., Yap, C. W., Sethi, G., Kumar, A. P., & Tan, K. H. B. (2011). Anticancer activity of thymoquinone in breast cancer cells: possible involvement of PPAR-γ pathway. Biochemical pharmacology, 82, 464–475.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Mashhad University of Medical Sciences research council for the financial support of the work (Grant No: 950779).

Funding

This study was funded by Research Affairs of Mashhad University of Medical Sciences, Mashhad, Iran (Grant No: 950779).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Z.T.N., S.A.E., B.J., and M.S. The first draft of the manuscript was written by M.S. B.J. and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Behjat Javadi or Zahra Tayarani-Najaran.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahbodi, M., Emami, S.A., Javadi, B. et al. Effects of Thymoquinone on Adipocyte Differentiation in Human Adipose-Derived Stem Cells. Cell Biochem Biophys 80, 771–779 (2022). https://doi.org/10.1007/s12013-022-01095-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-022-01095-z

Keywords

Navigation