Skip to main content
Log in

Memristive Properties of Manganite-Based Planar Structures

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The mechanisms of physical processes at the metal/La1–xSrxMnO3 manganite interfaces that determine the memristive properties of structures based on them were investigated experimentally and by numerical modeling. The transport properties of percolation channels of memristive structures based on epitaxial La1–xSrxMnO3–δ films were studied. It is shown that resistive switching in the studied structures is controlled by two processes. These are a change in the resistive state of the normal metal–oxide interface under the action of alternating voltage and electro diffusion of oxygen to vacancies, while the level of doping (oxygen) of the conducting channel changes, the electric field potential is redistributed, as a result, the resistive properties of the heterocontact change. The calculations showed that each successive transition of the heterostructure from the OFF to the ON state significantly depends not only on the switching voltage but also on the size and location of the gap structure that has been preserved from the previous switching from ON to OFF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Hunt, A.W., Singer, P.M., Thurber, K.R., and Imai, T., Cu NQR measurement of stripe order parameter in La2–xSrxCuO4, Phys. Rev. Lett., 1999, vol. 82, pp. 4300–4304.

    Article  Google Scholar 

  2. Singer, P.M., Hunt, A.W., Cederström, A.F., and Imai, T., Systematic 63Cu NQR study of the stripe phase in La1.6–xNd0.4SrxCuO4 for 0.07 < ~x < ~0.25, Phys. Rev. B, 1999, vol. 60, pp. 15345–15355.

    Article  Google Scholar 

  3. Curro, N.J., Hammel, P.C., Suh, B.J., et al., Inhomogeneous low frequency spin dynamics in La1.65Eu0.2Sr0.15CuO4, Phys. Rev. Lett., 2000, vol. 85, pp. 642–645.

    Article  Google Scholar 

  4. Kivelson, S.A., Bindloss, I.P., and Fradkin, E., How to detect fluctuating stripes in the high-temperature superconductors, Rev. Mod. Phys., 2003, vol. 75, pp. 1201–1241.

    Article  Google Scholar 

  5. Merithew, R.D., Weissman, M.B., Hess, F.M., et al., Mesoscopic thermodynamics of an inhomogeneous colossal-magnetoresistive phase, Phys. Rev. Lett., 2000, vol. 84, pp. 3442–3445.

    Article  Google Scholar 

  6. Dai, P., Fernandez-Baca, J.A., Wakabayashi, N., et al., Short-range polaron correlations in the ferromagnetic La1–xCaxMnO3, Phys. Rev. Lett., 2000, vol. 85, pp. 2553–2556.

    Article  Google Scholar 

  7. Heffner, R.H., Sonier, J.E., MacLaughlin, D.E., et al., Observation two time scales in the ferromagnetic manganite La1–xCaxMnO3, Phys. Rev. Lett., 2000, vol. 85, pp. 3285–3288.

    Article  Google Scholar 

  8. Dagotto, E., Complexity in strongly correlated electronic systems, Science (Washington, DC, U. S.), 2005, vol. 309, pp. 257–262.

    Article  Google Scholar 

  9. Nagaev, E.L., Colossal-magnetoresistance materials: manganites and conventional ferromagnetic semiconductor, Phys. Rep., 2001, vol. 346, pp. 387–531.

    Article  Google Scholar 

  10. Mishra, D.K., Roul, B.K., Singh, S.K., and Srinivasu, V.V., Possible observation of Griffith phase over large temperature range in plasma sintered La0.67Ca0.33MnO3, J. Magn. Magn. Mater., 2018, vol. 448, pp. 287–291.

    Article  Google Scholar 

  11. Bakov, Yu.M., Nikulin, E.I., Melekh, B.T., and Ego-rov, V.M., Conductivity, magnetoresistance, and specific heat of oxygen-deficient La0.67Sr0.33MnO3 (0–0.16), Phys. Solid State, 2004, vol. 46, pp. 2086–2093.

    Article  Google Scholar 

  12. Tulina, N.A., Uspenskaya, L.S., Sirotkin, V.V., Mukovskii, Y.M., and Shulyatev, D.A., Intrisic ingomogeneities and effects of resistive switchings in doped manganites, Phys. C (Amsterdam, Neth.), 2006, vol. 444, pp. 19–24.

    Google Scholar 

  13. Tulina, N.A., Borisenko, I.Yu., Ivanov, A.A., et al., Oxygen doping of HTSC and resistive switching in HTSC-based heterostructures, Springer Plus, 2013, vol. 2, no. 1, pp. 384–387.

    Article  Google Scholar 

  14. Tulina, N.A., Sirotkin, V.V., Borisenko, I.Yu., and Ivanov, A.A., Simulation resistive switching in heterostructures based on oxide compounds, Bull. Russ. Acad. Sci.: Phys., 2013, vol. 77, no. 3, pp. 297–299.

    Article  Google Scholar 

  15. Chaika, A.N., Ionov, A.M., Tulina, N.A., et al., J. Electron Spectrosc. Rel. Phenom., 2005, vol. 148, p. 101.

    Article  Google Scholar 

  16. Berdan, R., Serb, A., Khiat, A., et al., A μ-controller-based system for interfacing selectorless RRAM crossbar arrays, IEEE Trans. Electron Dev., 2015, vol. 62, p. 2190. https://doi.org/10.1109/TED.2015.2433676

    Article  Google Scholar 

  17. Sano, Y., Effect of space angle on constriction resistance and contact resistance for a point contact, J. Appl. Phys., 1985, vol. 58, pp. 2651–2654.

    Article  Google Scholar 

  18. Acha, C.J., Dynamical behaviour of the resistive switching in ceramic YBCO/metal interfaces, Phys. D: Appl. Phys., 2011, vol. 44, pp. 345301–345305.

    Article  Google Scholar 

  19. Schulman, A., Lanosa, L.F., and Acha, C., Poole-Frenkel effect and variable-range hopping conduction in metal/YBCO resistive switching devices, J. Appl. Phys., 2015, vol. 118, pp. 044511–011517.

    Article  Google Scholar 

  20. Tulina, N.A., Rossolenko, A.N., Ivanov, A.A., et al., Nd2–xCexCuO4–y/Nd2–xCexOy boundary and resistive switchings in mesoscopic structures on base of epitaxial Nd1.86Ce0.14CuO4–y films, Phys. C (Amsterdam, Neth.), 2016, vol. 527, pp. 41–45.

    Google Scholar 

  21. Hudgins, J., Wide and narrow bandgap semiconductors for power electronics, J. Electron. Mater., 2003, vol. 32, pp. 471–477.

    Article  Google Scholar 

  22. Pickett, M.D., Strukov, D.B., Borghetti, J.L., et al., Switching dynamics in titanium dioxide memristive devices, J. Appl. Phys., 2009, vol. 106, pp. 074508–074512. https://doi.org/10.1063/1.3236506

    Article  Google Scholar 

  23. Motzkau, H., Jacobs, T., Katterwe, S., et al., Persistent electrical doping of Bi2Sr2CaCu2O8+x mesa structures, Phys. Rev. B, 2012, vol. 85, pp. 144519–144529.

    Article  Google Scholar 

  24. Manca, N., Pellegrino, L., and Marré, D., Reversible oxygen vacancies doping in (La0.7,Sr0.3)MnO3 microbridges by combined self-heating and electromigration, Appl. Phys. Lett., 2015, vol. 106, pp. 203502–203507. https://doi.org/10.1063/1.4921342

    Article  Google Scholar 

Download references

Funding

The work was supported by the state tasks of the Osipyan Institute of Solid State Physics, RAS and the Institute of Problems of Microelectronics and High-Purity Materials RAS, as well as by the Russian Foundation for Basic Research, grant nos. 19-29-03021 mk and 19-29-03011 mk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Tulina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tulina, N.A., Shmytko, I.M., Ivanov, A.A. et al. Memristive Properties of Manganite-Based Planar Structures. Russ Microelectron 51, 349–357 (2022). https://doi.org/10.1134/S1063739722050110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739722050110

Keywords:

Navigation