Skip to main content

Advertisement

Log in

Joint effects of non-linear energy harvesting, primary interference, and full-duplex destination-assisted jamming on spectrum sharing networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Spectrum sharing (SS) and energy harvesting (EH) basically improve spectrum-and-energy efficiencies required by modern communications systems. Nonetheless, most publications have focused on the linear (L) EH model which did not characterize practically non-linearities of EH circuits. Moreover, SS induces secondary receivers to suffer primary interference (PI) and facilitates eavesdroppers to overhear legitimate data. To secure communications in energy harvesting spectrum sharing networks (EHSSNs), this paper proposes a full-duplex (FD) secondary destination which not only receives legitimate signal but also jams signal reception of the eavesdropper. Joint effects of non-linear (NL) EH, PI, and FD destination-assisted jamming on security-and-reliability performances of EHSSNs are first analyzed in terms of outage and intercept probabilities that are then endorsed by Monte-Carlo simulations. Next, the proposed analysis is exploited to achieve the asymptotic analysis and the security-and-reliability analysis for two baseline EHSSNs (half-duplex (HD) destination and L EH). Finally, numerous results demonstrate joint effects of NL EH, PI, and FD destination on data security and communication reliability by comparing three EHSSNs: (i) L EH and FD destination; (ii) NL EH and FD destination; (iii) NL EH and HD destination. Notably, the proposed communications scheme with the FD destination is more secure than the baseline scheme with the HD destination. In addition, the reliability of the communications scheme with the NL EH is inferior to that with the L EH but the data security of the former is better than the latter. Additionally, the security-reliability trade-off exists for all the considered communications schemes. Moreover, the PI enhances the security but degrades the reliability. Furthermore, the time fraction for EH can be optimized to attain the best security-reliability trade-off.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Raut et al. [11], Liu et al. [12], Kazmi et al. [4], Shanin et al. [30], Bayat et al. [31], Wang et al. [32], Ma et al. [33], Zhu et al. [34], Agrawal et al. [35], Shi et al. [36], and Dinh-Thuan et al. [37] studied non-spectrum sharing networks with NL EH and hence, such references should not be further surveyed.

  2. Wang et al. [42] proposed the jamming signal as a pseudo-random sequence whose seed of this sequence generator at \(\text{D}\) can be embedded in a short secret key, which is shared merely with \(\text{R}\), not with \(\text{E}\).

References

  1. Tashman, D. H., & Hamouda, W. (2021). Physical-layer security on maximal ratio combining for SIMO cognitive radio networks over cascaded \(\kappa -\mu \) fading channels. IEEE Transactions on Cognitive Communications and Networking, 7(4), 1244–1252.

    Article  Google Scholar 

  2. Yadav, S., & Gurjar, D. S. (2021). Secrecy performance of SIMO underlay cognitive radio networks over \(\alpha -\mu \) fading channels. IEEE Access, 9, 62616–62629.

    Article  Google Scholar 

  3. Ho-Van, K., Sofotasios, P. C., Muhaidat, S., Cotton, S. L., Yoo, S. K., Brychkov, Y. A., Dobre, O. A., & Valkama, M. (2021). Security improvement for energy harvesting based overlay cognitive networks with jamming-assisted full-duplex destinations. IEEE Transactions on Vehicular Technology, 70(11), 12232–12237.

    Article  Google Scholar 

  4. Kazmi, S. A. A., & Coleri, S. (2020). Optimization of full-duplex relaying system with non-Linear energy harvester. IEEE Access, 8, 201566–201576.

    Article  Google Scholar 

  5. Ji, B., Li, Y., Cao, D., Li, C., Mumtaz, S., & Wang, D. (2020). Secrecy performance analysis of UAV assisted relay transmission for cognitive network With energy harvesting. IEEE Transactions on Vehicular Technology, 69(7), 7404–7415.

    Article  Google Scholar 

  6. Xu, Y., Xie, H., Liang, C., & Yu, F. R. (2021). Robust secure energy efficiency optimization in SWIPT-aided heterogeneous networks with a non-linear energy harvesting model. IEEE IoT Journal, 8(19), 14908–14919.

    Google Scholar 

  7. Gautam, S., Lagunas, E., Chatzinotas, S., & Ottersten, B. (2019). Relay selection and resource allocation for SWIPT in multi-user OFDMA systems. IEEE Transactions on Wireless Communications, 18(5), 2493–2508.

    Article  Google Scholar 

  8. Xu, X., Özçelikkale, A., McKelvey, T., & Viberg, M. (2017). Simultaneous information and power transfer under a non-linear RF energy harvesting model. In Proc. (pp. 179–184). IEEE ICC.

  9. Clerckx, B. (2018). Wireless information and power transfer: nonlinearity, waveform design, and rate-energy tradeoff. IEEE Transactions on Signal Processing, 66(4), 847–862.

    Article  MathSciNet  MATH  Google Scholar 

  10. Babaei, M., Aygölü, Ü., Basaran, M., & Durak-Ata, L. (2020). BER performance of full-duplex cognitive radio network With nonlinear energy harvesting. IEEE Transactions on Green Communications and Networking, 4(2), 448–460.

    Article  Google Scholar 

  11. Raut, P., Sharma, P. K., Tsiftsis, T. A., & Zou, Y. (2020). Power-time splitting-based non-linear energy harvesting in FD short-packet communications. IEEE Transactions on Vehicular Technology, 69(8), 9146–9151.

    Article  Google Scholar 

  12. Liu, Y., Ye, Y., Ding, H., Gao, F., & Yang, H. (2020). Outage performance analysis for SWIPT-based incremental cooperative NOMA networks with non-linear harvester. IEEE Communications Letters, 24(2), 287–291.

    Article  Google Scholar 

  13. Lu, G., Shi, L., & Ye, Y. (2018). Maximum throughput of TS/PS scheme in an AF relaying network with non-linear energy harvester. IEEE Access, 6, 26617–26625.

    Article  Google Scholar 

  14. Sadique, J. J., Ullah, S. E., Islam, M. R., Raad, R., Kouzani, A. Z., & Mahmud, M. P. (2021). Transceiver design for full-duplex UAV based zero-padded OFDM system with physical layer security. IEEE Access, 9, 59432–59445.

    Article  Google Scholar 

  15. Ho-Van, K., & Do-Dac, T. (2021). Overlay networks with jamming and energy harvesting: security analysis. Arabian Journal for Science and Engineering, 46, 9713–9724.

    Article  Google Scholar 

  16. Yang, H., Xia, X., Li, J., Zhu, P., & You, X. (2022). Joint transceiver design for network-assisted full-duplex systems with SWIPT. IEEE Systems Journal, 16(1), 1206–1216.

    Article  Google Scholar 

  17. Thakur, A., Kumar, A., Gupta, N., & Chatterjee, P. (2022). Secrecy analysis of reconfigurable underlay cognitive radio networks with SWIPT and imperfect CSI. IEEE Transactions on Network Science and Engineering, 9(1), 89–97.

    Article  Google Scholar 

  18. Yan, P., Zou, Y., & Zhu, J. (2018). Energy-aware multiuser scheduling for physical-layer security in energy-harvesting underlay cognitive radio systems. IEEE Transactions on Vehicular Technology, 67(3), 2084–2096.

    Article  Google Scholar 

  19. Wang, X., Na, Z., Lam, K. Y., Liu, X., Gao, Z., Li, F., & Wang, L. (2019). Energy efficiency optimization for NOMA-based cognitive radio with energy harvesting. IEEE Access, 7, 139172–139180.

    Article  Google Scholar 

  20. Ge, L., Chen, G., Zhang, Y., Tang, J., Wang, J., & Chambers, J. A. (2020). Performance analysis for multihop cognitive radio networks with energy harvesting by using stochastic geometry. IEEE IoT Journal, 7(2), 1154–1163.

    Google Scholar 

  21. Bouabdellah, M., El Bouanani, F., Sofotasios, P. C., Muhaidat, S., Da Costa, D. B., Mezher, K., Ben-Azza, H., & Karagiannidis, G. K. (2019). Cooperative energy harvesting cognitive radio networks with spectrum sharing and security constraints. IEEE Access, 7, 173329–173343.

    Article  Google Scholar 

  22. Wang, D., Zhou, F., & Leung, V. C. (2020). Primary privacy preserving with joint wireless power and information transfer for cognitive radio networks. IEEE Transactions on Cognitive Communications and Networking, 6(2), 683–693.

    Article  Google Scholar 

  23. Shi, H., Cai, Y., Chen, D., Hu, J., Yang, W., & Yang, W. (2019). Physical layer security in an untrusted energy harvesting relay network. IEEE Access, 7, 24819–24828.

    Article  Google Scholar 

  24. Ho-Van, K., & Do-Dac, T. (2020). Security performance of underlay cognitive relaying networks with energy harvesting. Wireless Personal Communications, 110(2), 829–846.

    Article  Google Scholar 

  25. Ho-Van, K., & Do-Dac, T. (2020). Security enhancement for energy harvesting cognitive networks with relay selection. Wireless Communications and Mobile Computing, 2020, 1–13.

    Article  Google Scholar 

  26. Zhao, W., She, R., & Bao, H. (2019). Security energy efficiency maximization for two-way relay assisted cognitive radio NOMA network with self-interference harvesting. IEEE Access, 7, 74401–74411.

    Article  Google Scholar 

  27. Su, R., Wang, Y., & Sun, R. (2019). Secure cooperative transmission in cognitive AF relay systems with destination-aided jamming and energy harvesting. In Proc. (pp. 1–5). IEEE PIMRC.

  28. Xu, M., Jing, T., Fan, X., Wen, Y., & Huo, Y. (2018). Secure transmission solutions in energy harvesting enabled cooperative cognitive radio networks. In Proc. (pp. 1–6). IEEE WCNC.

  29. Su, R., Wang, Y., & Sun, R. (2018). Destination-assisted jamming for physical-layer security in SWIPT cognitive radio systems. In Proc. (pp. 1–6). IEEE WCNC.

  30. Shanin, N., Cottatellucci, L., & Schober, R. (2021). Markov decision process based design of SWIPT systems: Non-linear EH circuits, memory, and impedance mismatch. IEEE Transactions on Communications, 69(2), 1259–1274.

    Article  Google Scholar 

  31. Bayat, S., Khalili, A., & Han, Z. (2020). Resource allocation for MC MISO-NOMA SWIPT-enabled HetNets with non-linear energy harvesting. IEEE Access, 8, 192270–192281.

    Article  Google Scholar 

  32. Wang, D., et al. (2020). Performance analysis and resource allocations for a WPCN With a new nonlinear energy harvester model. IEEE OJ-CS, 1, 1403–1424.

    Google Scholar 

  33. Ma, G., Xu, J., Liu, Y. F., & Moghadam, M. R. V. (2021). Time-division energy beamforming for multiuser wireless power transfer with non-linear energy harvesting. IEEE Wireless Communications Letters, 10(1), 53–57.

    Article  Google Scholar 

  34. Zhu, Z., Wang, N., Hao, W., Wang, Z., & Lee, I. (2021). Robust beamforming designs in secure MIMO SWIPT IoT networks with a non-linear channel model. IEEE IoT Journal, 8(3), 1702–1715.

    Google Scholar 

  35. Agrawal, K., Flanagan, M. F., & Prakriya, S. (2020). NOMA with battery-assisted energy harvesting full-duplex relay. IEEE Transactions on Vehicular Technology, 69(11), 13952–13957.

    Article  Google Scholar 

  36. Shi, L., Cheng, W., Ye, Y., Zhang, H., & Hu, R. Q. (2018). Heterogeneous power-splitting based two-way DF relaying with non-linear energy harvesting. In Proc. (pp. 1–7). IEEE GLOBECOM.

  37. Do, D. T., Le, C. B., & Le, A. T. (2020). Joint of full-duplex relay, non-linear energy harvesting and multiple access in performance improvement of cell-edge user in heterogeneous networks. Wireless Networks, 26(8), 6253–6266.

    Article  Google Scholar 

  38. Wang, D., & Men, S. (2018). Secure energy efficiency for NOMA based cognitive radio networks with nonlinear energy harvesting. IEEE Access, 6, 62707–62716.

    Article  Google Scholar 

  39. Ni, L., Da, X., Hu, H., Zhang, M., & Cumanan, K. (2020). Outage constrained robust secrecy energy efficiency maximization for EH cognitive radio networks. IEEE Wireless Communications Letters, 9(3), 363–366.

    Article  Google Scholar 

  40. Solanki, S., Upadhyay, P. K., Da Costa, D. B., Ding, H., & Moualeu, J. M. (2020). Performance analysis of piece-wise linear model of energy harvesting-based multiuser overlay spectrum sharing networks. IEEE OJ-CS, 1, 1820–1836.

    Google Scholar 

  41. Hakimi, A., Mohammadi, M., Mobini, Z., & Ding, Z. (2020). Full-duplex non-orthogonal multiple access cooperative spectrum-sharing networks with non-linear energy harvesting. IEEE Transactions on Vehicular Technology, 69(10), 10925–10936.

    Article  Google Scholar 

  42. Wang, F., & Zhang, X. (2020). Secure resource allocation for polarization-based non-linear energy harvesting over 5G cooperative CRNs. IEEE Wireless Communications Letters (accepted). https://ieeexplore.ieee.org/document/9212400/.

  43. Maji, P., Roy, S. D., & Kundu, S. (2019). Physical layer security with non-linear energy harvesting relay. In Proc. (pp. 1–6). IEEE ICCCNT.

  44. Bharadia, D., McMilin, E., & Katti, S. (2013). Full duplex radios. In Proc. ACM SIGCOMM, HongKong (pp. 375–386).

  45. Li, M., Huang, Y., Yin, H., Wang, Y., & Cai, C. (2019). Improving the security and spectrum efficiency in overlay cognitive full-duplex wireless networks. IEEE Access, 7, 68359–68372.

    Article  Google Scholar 

  46. Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series and products (6th ed.). Academic Press.

  47. Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions with formulas, graphs, and mathematical tables (10th ed.). U.S. Government Printing Office.

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.04-2019.318. We acknowledge Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiem Do-Dac.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proof for the PDF of \(P_s\) in (28)

Appendix A: Proof for the PDF of \(P_s\) in (28)

To obtain the PDF of \(P_s\), one firstly needs the CDF of \(P_s\). Plugging (10) into the definition of the CDF results in

$$\begin{aligned} {F_{{P_s}}}\left( x \right)= & {} \mathbb {P} \left\{ {\min \left( {{{\hat{P}}_s},\frac{{{Q}}}{{{g_{sp}}}}} \right) \le x} \right\} \nonumber \\= & {} 1 - \mathbb {P} \left\{ {\min \left( {{{\hat{P}}_s},\frac{{{Q}}}{{{g_{sp}}}}} \right)> x} \right\} \nonumber \\= & {} 1 - \underbrace{\mathbb {P} \left\{ {{{\hat{P}}_s}> x} \right\} }_{{{\mathcal{P}}_{1}}}\underbrace{\mathbb {P} \left\{ {\frac{{{Q}}}{{{g_{sp}}}} > x} \right\} }_{{{\mathcal{P}}_2}}. \end{aligned}$$
(51)

The \(\mathcal{P}_2\) term can be rewritten in terms of the CDF of \(g_{ps}\) as

$$\begin{aligned} {{\mathcal{P}}_2} = \mathbb {P} \left\{ {{g_{sp}} < \frac{{{Q}}}{x}} \right\} = 1 - {e^{ - \frac{{{Q}}}{{{\lambda _{sp}}x}}}}. \end{aligned}$$
(52)

Given \(\hat{P}_s\) in (1), the \(\mathcal{P}_1\) term is further decomposed as

$$\begin{aligned} {{\mathcal{P}}_1}= & {} \mathbb {P} \left\{ {0> x,{P_p}{g_{ps}} \le {P_l}} \right\} \nonumber \\&+\, \mathbb {P} \left\{ {{A_s}{P_p}{g_{ps}}> x,{P_l}< {P_p}{g_{ps}} \le {P_u}} \right\} \nonumber \\&+\, \mathbb {P} \left\{ {{A_s}{P_u}> x,{P_p}{g_{ps}}> {P_u}} \right\} \nonumber \\= & {} \mathbb {P} \left\{ {{g_{ps}}> \frac{x}{{{A_s}{P_p}}},\frac{{{P_l}}}{{{P_p}}} < {g_{ps}} \le \frac{{{P_u}}}{{{P_p}}}} \right\} \nonumber \\&+\, \mathbb {P} \left\{ {{A_s}{P_u}> x} \right\} \mathbb {P} \left\{ {{g_{ps}} > \frac{{{P_u}}}{{{P_p}}}} \right\} . \end{aligned}$$
(53)

To complete the derivation of (53), three cases should be considered as follows:

Case 1: \(x \le {A_s}{P_l}\)

This case simplifies (53) as

$$\begin{aligned} {{\mathcal{P}}_1}= & {} \mathbb {P} \left\{ {\frac{{{P_l}}}{{{P_p}}}< {g_{ps}} \le \frac{{{P_u}}}{{{P_p}}}} \right\} + \mathbb {P} \left\{ {{g_{ps}} > \frac{{{P_u}}}{{{P_p}}}} \right\} \nonumber \\= & {} \mathbb {P} \left\{ {\frac{{{P_l}}}{{{P_p}}} < {g_{ps}}} \right\} \nonumber \\= & {} {e^{ - \frac{{{P_l}}}{{{P_p}{\lambda _{ps}}}}}}. \end{aligned}$$
(54)

Case 2: \({A_s}{P_l} < x \le {A_s}{P_u}\)

This case simplifies (53) as

$$\begin{aligned} {{\mathcal{P}}_1}= & {} \mathbb {P} \left\{ {\frac{x}{{{A_s}{P_p}}}< {g_{ps}} \le \frac{{{P_u}}}{{{P_p}}}} \right\} + \mathbb {P} \left\{ {{g_{ps}} > \frac{{{P_u}}}{{{P_p}}}} \right\} \nonumber \\= & {} \mathbb {P} \left\{ {\frac{x}{{{A_s}{P_p}}} < {g_{ps}}} \right\} \nonumber \\= & {} {e^{ - \frac{x}{{{A_s}{P_p}{\lambda _{ps}}}}}}. \end{aligned}$$
(55)

Case 3: \(x > {A_s}{P_u}\)

This case simplifies (53) as

$$\begin{aligned} {{\mathcal{P}}_1} = 0. \end{aligned}$$
(56)

Plugging \({{\mathcal{P}}_1}\) and \({{\mathcal{P}}_2}\) into (51), one obtains the CDF of \(P_s\) as

$$\begin{aligned} {F_{{P_s}}}\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {1 - {e^{ - \frac{{{P_l}}}{{{P_p}{\lambda _{ps}}}}}}\left( {1 - {e^{ - \frac{{{Q}}}{{{\lambda _{sp}}x}}}}} \right) }&{}{,x \le {A_s}{P_l}}\\ {1 - {e^{ - \frac{x}{{{A_s}{P_p}{\lambda _{ps}}}}}}\left( {1 - {e^{ - \frac{{{Q}}}{{{\lambda _{sp}}x}}}}} \right) }&{}{,{A_s}{P_l} < x \le {A_s}{P_u}}\\ 1&{}{,x > {A_s}{P_u}} \end{array}} \right. \end{aligned}$$
(57)

The derivative of \({F_{P_s}}\left( x \right) \), which is simplified as (28), is the PDF of \(P_s\), completing the proof.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho-Van, K., Do-Dac, T. Joint effects of non-linear energy harvesting, primary interference, and full-duplex destination-assisted jamming on spectrum sharing networks. Wireless Netw 29, 221–234 (2023). https://doi.org/10.1007/s11276-022-03119-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03119-1

Keywords

Navigation