Skip to main content
Log in

Fabrication of Electrochemical Biosensor Using Zinc Oxide Nanoflowers for the Detection of Uric Acid

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

A label-free electrochemical biosensor has been developed using zinc oxide nanoflowers (ZnONFs) for the detection of uric acid concentration in human blood serum. ZnONFs have been synthesized by a hydrothermal process and characterized with several techniques such as ultraviolet–visible (UV–Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR) studies, X-ray diffraction (XRD) study, Raman spectroscopy, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) and electrochemical analyzer to confirm the formation of nanoflowers and fabrication of electrode and bio-electrodes for uric acid detection. Zinc Oxide nanoflowers have been deposited onto indium–tin oxide (ITO) substrate through electrophoretic deposition technique, and the biosensor has been fabricated by immobilizing urate oxidase (UOx) enzyme onto ZnONFs/ITO electrode surfaces. Further, electrochemical studies have been performed with immobilized UOx/ZnONFs/ITO bio-electrode as a function of uric acid concentrations. It has been found that the fabricated uric acid biosensor shows a high sensitivity (10.38 μA/mM/cm2) and a limit of detection of 0.13 mM in the range of 0.005 to 1.0 mM. This study demonstrates the potential use of ZnONFs for the construction of sensitive biosensors for uric acid detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Bhambi, G. Sumana, B.D. Malhotra and C.S. Pundir, An amperomertic uric acid biosensor based onimmobilization of uricase onto polyaniline-multiwalled carbon nanotube composite film. Artif Cells Blood Substit Immobil Biotechnol (2010). https://doi.org/10.3109/1073119100371634.

    Article  Google Scholar 

  2. A. Umar, M.M. Rahman, M. Vaseem and Y.B. Hahn, Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochemistry Communications (2009). https://doi.org/10.1016/j.elecom.2008.10.046.

    Article  Google Scholar 

  3. F. Arellano, J. A. Sacristán, Allopurinol hypersensitivity syndrome: a review. Annals of Pharmacotherapy (1993). https://doi.org/10.1177/10600280930270031

  4. J.A.T.L. MacLachlan, A.T.L. Wotherspoon, R.O. Ansell and C.J.W. Brooks, Cholesterol oxidase: sources, physical properties and analytical applications. The Journal of steroid biochemistry and molecular biology (2000). https://doi.org/10.1016/S0960-0760(00)00044-3.

    Article  Google Scholar 

  5. A.K. Bhargava, H. Lal and C.S. Pundir, Discrete analysis of serum uric acid with immobilized uricase and peroxidase. Journal of biochemical and biophysical methods (1999). https://doi.org/10.1016/S0165-022X(99)00007-X.

    Article  Google Scholar 

  6. N. Chauhan and C.S. Pundir, An amperometric uric acid biosensor based on multiwalled carbon nanotube–gold nanoparticle composite. Analytical biochemistry (2011). https://doi.org/10.1016/j.ab.2011.02.007.

    Article  Google Scholar 

  7. M. Ali, I. Shah, S.W. Kim, M. Sajid, J.H. Lim and K.H. Choi, Quantitative detection of uric acid through ZnO quantum dots based highly sensitive electrochemical biosensor. Sensors and Actuators A: Physical (2018). https://doi.org/10.1016/j.sna.2018.10.009.

    Article  Google Scholar 

  8. S. Jain, S. Verma, S.P. Singh and S.N. Sharma, An electrochemical biosensor based on novel butylamine capped CZTS nanoparticles immobilized by uricase for uric acid detection. Biosensors and Bioelectronics (2019). https://doi.org/10.1016/j.bios.2018.12.008.

    Article  Google Scholar 

  9. T. Del Castillo-Castro, E. Larios-Rodriguez, Z. Molina-Arenas, M.M. Castillo-Ortega and J. Tanori, Synthesis and characterization of metallic nanoparticles and their incorporation into electroconductive polymer composites. Composites Part A: Applied Science and Manufacturing (2007). https://doi.org/10.1016/S0925-4005(02)00045-X.

    Article  Google Scholar 

  10. Y. Zhang, G. Wen, Y. Zhou, S. Shuang, C. Dong and M.M. Choi, Development and analytical application of an uric acid biosensor using an uricase-immobilized eggshell membrane. Biosensors and Bioelectronics (2007). https://doi.org/10.1016/j.bios.2006.08.038.

    Article  Google Scholar 

  11. F. Zhang, X. Wang, S. Ai, Z. Sun, Q. Wan, Z. Zhu and K. Yamamoto, Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Analytica Chimica Acta (2004). https://doi.org/10.1016/j.aca.2004.05.070.

    Article  Google Scholar 

  12. J. Kan, X. Pan and C. Chen, Polyaniline–uricase biosensor prepared with template process. Biosensors and Bioelectronics (2004). https://doi.org/10.1016/j.bios.2003.12.032.

    Article  Google Scholar 

  13. G. Liu and J. Justin Gooding, An interface comprising molecular wires and poly (ethylene glycol) spacer units self-assembled on carbon electrodes for studies of protein electrochemistry. Langmuir (2006). https://doi.org/10.1021/la0607510.

    Article  Google Scholar 

  14. M.M. Alam, A.M. Asiri, M.T. Uddin, M.A. Islam, M.R. Awual and M.M. Rahman, Detection of uric acid based on doped ZnO/Ag 2 O/Co 3 O 4 nanoparticle loaded glassy carbon electrode. New Journal of Chemistry (2019). https://doi.org/10.1039/C9NJ01287G.

    Article  Google Scholar 

  15. G. Rocchitta, A. Spanu, S. Babudieri, G. Latte, G. Madeddu, G. Galleri and P.A. Serra, Enzyme biosensors for biomedical applications: Strategies for safeguarding analytical performances in biological fluids. Sensors (2016). https://doi.org/10.3390/s16060780.

    Article  Google Scholar 

  16. M. Mohammadniaei, C. Park, J. Min, H. Sohn and T. Lee, Fabrication of electrochemical-based bioelectronic device and biosensor composed of biomaterial-nanomaterial hybrid. Biomimetic Medical Materials (2018). https://doi.org/10.1007/978-981-13-0445-3_17.

    Article  Google Scholar 

  17. A.R. Vijayakumar, E. Csöregi, A. Heller and L. Gorton, Alcohol biosensors based on coupled oxidase-peroxidase systems. Analytica Chimica Acta (1996). https://doi.org/10.1016/0003-2670(96)00093-1.

    Article  Google Scholar 

  18. P.E. Erden and E. Kılıç, A review of enzymatic uric acid biosensors based on amperometric detection. Talanta (2013). https://doi.org/10.1016/j.talanta.2013.01.043.

    Article  Google Scholar 

  19. L.V. Bel’skaya, E.A. Sarf and V.K. Kosenok, Age and gender characteristics of the biochemical composition of saliva: correlations with the composition of blood plasma. Journal of oral biology and craniofacial research (2020). https://doi.org/10.1016/j.jobcr.2020.02.004.

    Article  Google Scholar 

  20. J.M. George, A. Antony and B. Mathew, Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchimica Acta (2018). https://doi.org/10.1007/s00604-018-2894-3.

    Article  Google Scholar 

  21. R. Chen, Y. Wang, Y. Liu and J. Li, Selective electrochemical detection of dopamine using nitrogen-doped graphene/manganese monoxide composites. RSC Advances (2015). https://doi.org/10.1039/C5RA14328D.

    Article  Google Scholar 

  22. H. Zhu, A. Sigdel, S. Zhang, D. Su, Z. Xi, Q. Li and S. Sun, Core/shell Au/MnO nanoparticles prepared through controlled oxidation of AuMn as an electrocatalyst for sensitive H2O2 detection. Angewandte Chemie International Edition (2014). https://doi.org/10.1002/anie.201406281.

    Article  Google Scholar 

  23. S. Zhao, D.W. Wang, R. Amal and L. Dai, Carbon based metal free catalysts for key reactions involved in energy conversion and storage. Advanced Materials (2019). https://doi.org/10.1002/adma.201801526.

    Article  Google Scholar 

  24. S.Y. Kishioka and A. Yamada, Kinetic study of the catalytic oxidation of benzyl alcohols by phthalimide-N-oxyl radical electrogenerated in acetonitrile using rotating disk electrode voltammetry. Journal of Electroanalytical Chemistry (2005). https://doi.org/10.1016/j.jelechem.

    Article  Google Scholar 

  25. H. Karimi-Maleh, F. Karimi, M. Alizadeh and A.L. Sanati, Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems. Chem. Rec., 20 (2020) 682–692. https://doi.org/10.1002/tcr.201900092.

    Article  Google Scholar 

  26. Y. Pan, J. Zuo, Z. Hou, Y. Huang and C. Huang, Preparation of Electrochemical Sensor Based on Zinc Oxide Nanoparticles for Simultaneous Determination of AA, DA, and UA. Front. Chem., 8 (2020) 592538. https://doi.org/10.3389/fchem.2020.592538.

    Article  Google Scholar 

  27. S. Cimitan, S. Albonetti, L. Forni, F. Peri and D. Lazzari, Solvothermal synthesis and properties control of doped ZnO nanoparticles. Journal of Colloid and Interface Science (2009). https://doi.org/10.1016/j.jcis.2008.09.060.

    Article  Google Scholar 

  28. N.S. Rao and M.B. Rao, Structural and optical investigation of ZnO nanopowders synthesized from zinc chloride and zinc nitrate. Am. J. Mater. Sci, 5 (2015) 66–68.

    Google Scholar 

  29. Bharti, J.S. Jangwan, G. Kumar, V. Kumar and A. Kumar. Abatement of organic and inorganic pollutants from drinking water by using commercial and laboratory-synthesized zinc oxide nanoparticles. SN Appl. Sci., 3 (2021) 311. https://doi.org/10.1007/s42452-021-04294-0

  30. A. Umar, M.M. Rahman, M. Vaseem and Y.-B. Hahn. Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochem. Commun., 11(1) (2009) 118–121. https://doi.org/10.1016/j.elecom.2008.10.046

    Article  Google Scholar 

  31. F. Bigdeli, A. Morsali and P. Retailleau, Syntheses and characterization of different zinc (II) oxide nano-structures from direct thermal decomposition of 1D coordination polymers. Polyhedron (2010). https://doi.org/10.1016/j.poly.2009.10.027.

    Article  Google Scholar 

  32. R. Cuscó, E. Alarcón-Lladó, J. Ibanez, L. Artús, J. Jiménez, B. Wang and M.J. Callahan, Temperature dependence of Raman scattering in ZnO. Physical Review B (2007). https://doi.org/10.1103/PhysRevB.75.165202.

    Article  Google Scholar 

  33. U. Pal, J.G. Serrano, P. Santiago, G. Xiong, K.B. Ucer and R.T. Williams, Synthesis and optical properties of ZnO nanostructures with different morphologies. Optical Materials (2006). https://doi.org/10.1016/j.optmat.2006.03.015.

    Article  Google Scholar 

  34. M. Kashif, M.N. Akhtar, N. Nasir and N. Yahya, Versatility of ZnO nanostructures. Carbon and Oxide Nanostructures. Springer, Berlin (2010).

    Book  Google Scholar 

  35. N.G. Mphuthi, A.S. Adekunle, O.E. Fayemi, L.O. Olasunkanmi and E.E. Ebenso, Phthalocyanine doped metal oxide nanoparticles on multiwalled carbon nanotubes platform for the detection of dopamine. Scientific reports (2017). https://doi.org/10.1038/srep43181.

    Article  Google Scholar 

  36. N.M. Nor, K.A. Razak and Z. Lockman, Physical and electrochemical properties of iron oxide nanoparticles-modified electrode for amperometric glucose detection. Electrochimica Acta (2017). https://doi.org/10.1016/j.electacta.2017.07.097.

    Article  Google Scholar 

  37. N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart and J.L. Dempsey, A practical beginner’s guide to cyclic voltammetry. Journal of chemical education (2018). https://doi.org/10.1021/acs.jchemed.7b00361.

    Article  Google Scholar 

  38. Q. Yan, N. Zhi, L. Yang, G. Xu, Q. Feng, Q. Zhang and S. Sun, A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode. Scientific reports (2020). https://doi.org/10.1038/s41598-020-67394-8.

    Article  Google Scholar 

  39. T. Ghosh, P. Sarkar and A.P. Turner, A novel third generation uric acid biosensor using uricase electro-activated with ferrocene on a Nafion coated glassy carbon electrode. Bioelectrochemistry (2015). https://doi.org/10.1016/j.bioelechem.2014.11.001.

    Article  Google Scholar 

  40. K.P. Aryal and H.K. Jeong, Carbon nanofiber modified with reduced graphite oxide for detection of ascorbic acid, dopamine, and uric acid. Chemical Physics Letters (2020). https://doi.org/10.1016/j.cplett.2019.136969.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Director, National Physical Laboratory, New Delhi, India, for providing research facilities. Priyanka Dutta is thankful to UGC for providing research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to this work.

Corresponding author

Correspondence to Gajjala Sumana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approvel

This article does not contain any studies related to human participants or animal performed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, P., Sharma, V., Bhardwaj, H. et al. Fabrication of Electrochemical Biosensor Using Zinc Oxide Nanoflowers for the Detection of Uric Acid. MAPAN 37, 585–595 (2022). https://doi.org/10.1007/s12647-022-00598-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-022-00598-7

Keywords

Navigation