Skip to main content

Advertisement

Log in

Comparative study on transport and optical properties of silicon carbide nanoribbons with different terminations

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Silicon carbide nanoribbons (SiCNRs) are a novel layered material with potential value in the field of nanodevices. Based on the first-principles calculation, we investigated the effects of different terminations on the bandgap, transport, and optical properties of SiCNRs. The results show that for infinite width nanoribbons, the bandgap of SiCNSs with translational periodicity is increased and the optical anisotropy is more pronounced compared with that of SiCNTs with circular periodicity. For finite-width SiCNRs, impurity-like levels appear in the bandgap, which originate from the dispersion of the energy bands due to dangling bonds at the edges and nano-size effects, respectively. The dangling bonds are saturated with hydrogen atoms for hydrogen-passivated SiCNRs (H–SiCNRs), the energy levels are more discretized and the bandgap is reduced. Simulation of transport properties of different terminations shows that the variation range hopping mechanism caused by finite width is the dominant mechanism below room temperature, and the optical phonon scattering is the dominant mechanism above room temperature. In addition, the dielectric response of H–SiCNRs appeared in the deep-UV region. These findings are favorable for the application of SiC nanomaterials in optoelectronic devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

All data generated or analysed during this study are included in this published article, and its supplementary information files.

References

  1. H. Zhang, J. Zhang, H. Zhang, Mater. Res. Bull. 41, 1279–1286 (2006)

    Article  Google Scholar 

  2. P. Mélinon, B. Masenelli, F. Tournus et al., Nat. Mater. 6, 479–490 (2007)

    Article  ADS  Google Scholar 

  3. X.L. Feng, M.H. Matheny, C.A. Zorman et al., Nano. Lett. 10, 2891–2896 (2010)

    Article  ADS  Google Scholar 

  4. Y. Katoh, K. Ozawa, C. Shih et al., Nucl. Mater. 448, 448–476 (2014)

    Article  ADS  Google Scholar 

  5. V.V. Pokropivnyi, P.M. Silenko, Theor. Exp. Chem. 42, 3–15 (2006)

    Article  Google Scholar 

  6. V. Márton, D. Péter, F. Thomas et al., Appl. Phys. Lett. 96, 051909 (2010)

    Article  Google Scholar 

  7. K. Termentzidis, T. Barreteau, Y.X. Ni et al., Phys. Rev. B 87, 125410 (2013)

    Article  ADS  Google Scholar 

  8. A. Laref, N. Alshammari, S. Laref et al., Dalton Trans. 43, 5505–5515 (2014)

    Article  Google Scholar 

  9. H. Li, Z. He, Y. Chu et al., Mater. Lett. 109, 275–278 (2013)

    Article  Google Scholar 

  10. Y.H. Jia, P. Gong, S.L. Li et al., Phys. Lett. A 384, 126106 (2020)

    Article  Google Scholar 

  11. W.D. Ma, Y.L. Li, P. Gong et al., Chin. Phys. B 30, 107801 (2021)

    Article  ADS  Google Scholar 

  12. P. Gong, Y.Z. Li, M.Y. Sun et al., Physica B 620, 413276 (2021)

    Article  Google Scholar 

  13. G.C. Xi, Y.Y. Peng, S.M. Wan et al., J. Phys. Chem. B 108, 20102–20104 (2004)

    Article  Google Scholar 

  14. R. Wu, L. Wu, G. Yang et al., J. Phys. D 40, 3697–3701 (2007)

    Article  ADS  Google Scholar 

  15. G. Wei, W. Qin, R. Kim et al., Chem. Phys. Lett. 461, 242–245 (2008)

    Article  ADS  Google Scholar 

  16. J. Guan, W. Chen, X.J. Zhao et al., J. Mater. Chem. 22, 24166–24172 (2002)

    Article  Google Scholar 

  17. E. Bekaroglu, M. Topsakal, S. Cahangirov et al., Phys. Rev. B 81, 075433 (2010)

    Article  ADS  Google Scholar 

  18. P. Lou, Phys. Chem. Chem. Phys. 13, 17194–17204 (2011)

    Article  Google Scholar 

  19. P. Lou, J. Mater. Chem. C 1, 2996 (2013)

    Article  Google Scholar 

  20. Y.Y. Yang, P. Gong, W.D. Ma et al., Chin. Phys. B 30, 067803 (2021)

    Article  ADS  Google Scholar 

  21. P. Gong, Y.Y. Yang, W.D. Ma et al., Physica E 128, 114578 (2021)

    Article  Google Scholar 

  22. W.D. Ma, W.K. Liu, P. Gong et al., Int. J. Mod. Phys. B 35, 2150207 (2021)

    Article  ADS  Google Scholar 

  23. A.Y. Alekseev, D.B. Migas, A.B. Filonov et al., Physica E 128, 114582 (2021)

    Article  Google Scholar 

  24. Y.Z. Li, M.Y. Sun, X.X. Yu et al., Mater. Sci. Eng. B-ADV. 284, 115896 (2022)

    Article  Google Scholar 

  25. Y.Z. Li, M.Y. Sun, X.X. Yu et al., Mater. Today Commun. 32, 104179 (2022)

    Article  Google Scholar 

  26. Y.J. Li, S.L. Li, P. Gong et al., Physica B 539, 72–77 (2018)

    Article  ADS  Google Scholar 

  27. X.Y. Fang, X.X. Yu, H.M. Zheng et al., Phys. Lett. A 379, 2245–2251 (2015)

    Article  ADS  Google Scholar 

  28. S.L. Li, X.X. Yu, Y.L. Li et al., Eur. Phys. J. B 92, 155 (2019)

    Article  ADS  Google Scholar 

  29. S.M. Goodwick, P. Lugli, Phys. Rev. B 37, 2578 (1988)

    Article  ADS  Google Scholar 

  30. Y.Z. Li, M.Y. Sun, X.X. Yu et al., Eur. Phys. J. Plus 137, 995 (2022)

    Google Scholar 

  31. S.D. Sarma, S. Adam, E.H. Hwang et al., Rev. Mod. Phys. 83, 407 (2011)

    Article  ADS  Google Scholar 

  32. Y.J. Li, S.L. Li, P. Gong et al., Physica E 104, 247–253 (2018)

    Article  ADS  Google Scholar 

  33. A. Mahroug, S. Boudjadar, S. Hamrit et al., J. Mater. Sci. Mater. Electron. 25, 4967–4974 (2014)

    Article  Google Scholar 

  34. P. Gong, Y.Y. Yang, W.D. Ma et al., Opt. Mater. 117, 111148 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Natural Science Foundation of Hebei Province (Grant no. A2021203030), and the National Natural Science Foundation of China (Grant no. 11574261).

Author information

Authors and Affiliations

Authors

Contributions

PG constructed the SiCNTs model, and made the original calculation. M-YS and Y-ZL constructed the SiCNSs and SiCNRs model, made the original calculation, data analysis and wrote this manuscript. W-KL and S-SK participated in data analysis. M-YS and X-YF designed all figures and tables. X-XY and X-YF provided guidance for the writing of the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiao-Yong Fang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 522 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, MY., Li, YZ., Yu, XX. et al. Comparative study on transport and optical properties of silicon carbide nanoribbons with different terminations. Eur. Phys. J. B 95, 142 (2022). https://doi.org/10.1140/epjb/s10051-022-00407-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00407-9

Navigation