Skip to main content
Log in

Synthesis of Magnetic Sulfonated Carbon/Fe3O4/Palygorskite Composites and Application as a Solid Acid Catalyst

  • Original Paper
  • Published:
Clays and Clay Minerals

Abstract

Sulfonated carbon is a green, solid acid catalyst but its surface area, separation, and recovery after utilization need to be improved. The objective of the present study was to provide an environmentally friendly and economical method to prepare magnetic sulfonated carbon composite catalyst with a large surface area using palygorskite (Plg) as the support. A magnetic sulfonated carbon/Fe3O4/Plg composite catalyst was prepared via simultaneous calcination and sulfonation of the mixture of source, p-toluenesulfonic acid (TsOH), and Fe3O4/Plg. Fe3O4 nanoparticles and Plg nanorods were encased by a carbon layer derived from sucrose and TsOH. The composite catalyst exhibited good magnetic properties and high catalytic performance for the esterification of oleic acid with methanol. Oleic acid conversion reached 88.69% after the first catalytic cycle. Plg nanorods replaced sucrose and increased the catalyst’s surface area. The introduction of Fe3O4 nanoparticles improved further the acid content and oleic-acid conversion and achieved 70.31% after five cycles. The catalyst was recycled easily using an external magnetic field and its magnetic property remained unchanged due to the protection of the carbon layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in the manuscript.

References

  • Araújo Melo, D. M., Ruiz, J. A. C., Melo, M. A. F., Sobrinbo, E. V., & Martinelli, A. E. (2002). Preparation and characterization of lanthanum palygorskite clays as acid catalysts. Journal of Alloys and Compounds, 344, 352–355.

    Article  Google Scholar 

  • Bae, D. S., Han, K. S., Cho, S. B., & Choi, S. H. (1998). Synthesis of ultrafine Fe3O4 powder by glycothermal process. Materials Letters, 37, 255–258.

    Article  Google Scholar 

  • Ballotin, F. C., da Silva, M. J., Lago, R. M., & de Carvalho Teixeir, A. P. (2020). Solid acid catalysts based on sulfonated carbon nanostructures embedded in an amorphous matrix produced from bio-oil: esterification of oleic acid with methanol. Journal of Environmental Chemical Engineering, 8, 103674.

    Article  Google Scholar 

  • Cui, J., Zhang, Z., & Han, F. (2020). Effects of pH on the gel properties of montmorillonite, palygorskite and montmorillonite-palygorskite composite clay. Applied Clay Science, 190, 105543.

    Article  Google Scholar 

  • Dehkhoda, A. M., West, A. H., & Ellis, N. (2010). Biochar based solid acid catalyst for biodiesel production. Applied Catalysis A: General, 382, 197–204.

    Article  Google Scholar 

  • Flores, K. P., Omega, J. L. O., Cabatingan, L. K., Go, A. W., Agapay, R. C., & Ju, Y. H. (2019). Simultaneously carbonized and sulfonated sugarcane bagasse as solid acid catalyst for the esterification of oleic acid with methanol. Renewable Energy, 130, 510–523.

    Article  Google Scholar 

  • Geng, L., Wang, Y., Yu, G., & Zhu, Y. (2011). Efficient carbon-based solid acid catalysts for the esterification of oleic acid. Catalysis Communications, 13, 26–30.

    Article  Google Scholar 

  • Golden, D. C., & Dixon, J. B. (1990). Low-temperature alteration of palygorskite to smectite. Clays and Clay Minerals, 38, 401–408.

    Article  Google Scholar 

  • Iroh, J. O., & Williams, C. (1999). Formation of thermally stable polypyrrole-naphthalener/benzene sulfonate-carbon fiber composites by an electrochemical process. Synthetic Metals, 99, 1–8.

    Article  Google Scholar 

  • Jiang, J., Feng, L., Gu, X., Qian, Y., Gu, Y., & Duanmu, C. S. (2012a). Synthesis of zeolite A from palygorskite via acid activation. Applied Clay Science, 55, 108–113.

    Article  Google Scholar 

  • Jiang, J., Xu, Y., Duanmu, C. S., Gu, X., & Chen, J. (2012b). Preparation and catalytic properties of sulfonated carbon-palygorskite solid acid catalyst. Applied Clay Science, 95, 260–264.

    Article  Google Scholar 

  • Jiang, J., Chen, Z., Duanmu, C. S., Gu, Y., Chen, J., & Ni, L. (2014). Economical synthesis of amorphous carbon nanotubes and SBA-15 mesoporous materials using palygorskite as a template and silica source. Materials Letters, 132, 425–427.

    Article  Google Scholar 

  • Kasprzak, A., Bystrzejewski, M., & Poplawska, M. (2018). Sulfonated carbon-encapsulated iron nanoparticles as an efficient magnetic nanocatalyst for highly selective synthesis of benzimidazoles. Dalton Transactions, 47, 6314–6322.

    Article  Google Scholar 

  • Konwar, L. J., Das, R., Thakur, A. J., Salminen, E., Mäki-Arvela, P., Kumar, N., Mikkola, J. P., & Deka, D. (2014). Biodiesel production from acid oils using sulfonated carbon catalyst derived from oil-cake waste. Journal of Molecular Catalysis A: Chemical, 388–389, 167–176.

    Article  Google Scholar 

  • Laohapornchaiphan, J., Smith, C. B., & Smith, S. M. (2017). One-step preparation of carbon-based solid acid catalyst from water hyacinth leaves for esterification of oleic acid and dehydration of xylose. Chemistry – An Asian Journal, 12, 3178–3186.

    Article  Google Scholar 

  • Mansoori, Z., & Mansoori, Y. (2018). Fe3O4@SiO2-SO3H Nanoparticles: An efficient magnetically retrievable catalyst for esterification reactions. Journal of Particle Science Technology, 4, 67–79.

    Google Scholar 

  • Middea, A., Spinelli, L. S., Souza Junior, F. G., Neumann, R., da FM Gomes, O., Fernandes, T. L. A. P., de Lima, L. C., Barthem, V. M. T. S., & de Carvalho, F. V. (2015). Synthesis and characterization of magnetic palygorskite nanoparticles and their application on methylene blue remotion from water. Applied Surface Science, 346, 232–239.

    Article  Google Scholar 

  • Murray, H. H. (2000). Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Applied Clay Science, 17, 207–221.

    Article  Google Scholar 

  • Ngaosuwan, K., Goodwin Jr., J. G., & Prasertdham, P. (2016). A green sulfonated carbon-based catalyst derived from coffee residue for esterification. Renewable Energy, 86, 262–269.

    Article  Google Scholar 

  • Palani, A., & Pandurangan, A. (2005). Esterification of acetic acid over mesoporous Al-MCM-41 molecular sieves. Journal of Molecular Catalysis A: Chemical, 226, 129–226134.

    Article  Google Scholar 

  • Peng, L., Philippaerts, A., Ke, X., Noyen, J. V., Clippel, F. D., Tendeloo, G. V., Jacobs, P. A., & Sels, B. F. (2010). Preparation of sulfonated ordered mesoporous carbon and its use for the esterification of fatty acids. Catalysis Today, 150, 140–146.

    Article  Google Scholar 

  • Pileidis, F. D., Tabassum, M., Coutts, S., & Ttitirici, M. M. (2014). Esterification of levulinic acid into ethyl levulinate catalysed by sulfonated hydrothermal carbons. Chinese Journal of Catalysis, 35, 929–936.

    Article  Google Scholar 

  • Polshettiwar, V., Luque, R., Fihri, A., Zhu, H., Bouhrara, M., & Basset, J. M. (2011). Magnetically Recoverable Nanocatalysts. Chemical Reviews, 111, 3036–3075.

    Article  Google Scholar 

  • Rao, B. V. S. K., Chandra Mouli, K., Rambabu, N., Dalai, A. K., & Prasad, R. B. N. (2011). Carbon-based solid acid catalyst from de-oiled canola meal for biodiesel production. Catalysis Communications, 14, 20–26.

    Article  Google Scholar 

  • Sarkar, B., Liu, E., McClure, S., Sundaramurthy, J., Srinivasan, M., & Naidu, R. (2015). Biomass derived palygorskite-carbon nanocomposites: Synthesis, characterisation and affinity to dye compounds. Applied Clay Science, 114, 617–626.

    Article  Google Scholar 

  • Sejidov, F. T., Mansoori, Y., & Goodarzi, N. (2005). Esterification reaction using solid heterogeneous acid catalysts under solvent-less condition. Journal of Molecular Catalysis A: Chemical, 204, 186–190.

    Google Scholar 

  • Shu, Q., Gao, J., Nawaz, Z., Liao, Y., Wang, D., & Wang, J. (2010). Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst. Applied Energy, 87, 2589–2596.

    Article  Google Scholar 

  • Suárez Barrios, M., Flores González, L. V., Vicente Rodríguez, M. A., & Martín Pozas, J. M. (1995). Acid activation of a palygorskite with HCl: development of physico-chemical, textural and surface properties. Applied Clay Science, 10, 247–258.

    Article  Google Scholar 

  • Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., & Hara, M. (2010). Synthesis and acid catalysis of cellulose-derived carbon-based solid acid. Solid State Sciences, 12, 1029–1024.

    Article  Google Scholar 

  • Tang, J., Mu, B., Zong, L., Zheng, M., & Wang, A. (2017). Facile and green fabrication of magnetically recyclable carboxyl-functionalized attapulgite/carbon nanocomposites derived from spent bleaching earth for wastewater treatment. Chemical Engineering Journal, 322, 102–114.

    Article  Google Scholar 

  • Tang, J., Mu, B., Zong, L., & Wang, A. (2018). One-step synthesis of magnetic attapulgite/carbon supported NiFe-LDHs by hydrothermal process of spent bleaching earth for pollutants removal. Journal of Cleaner Production, 172, 673–685.

    Article  Google Scholar 

  • Testa, M. L., Parola, V. L., & Venezia, A. M. (2010). Esterification of acetic acid with butanol over sulfonic acid-functionalized hybrid silicas. Catalysis Today, 158, 109–113.

    Article  Google Scholar 

  • Toda, M., Takagaki, A., Okamura, M., Kondo, J. N., Hayashi, S., Domen, K., & Hara, M. (2005). Biodiesel made with sugar catalyst. Nature, 438, 178.

    Article  Google Scholar 

  • Van de Vyver, S., Peng, L., Geboers, J., Schepers, H., de Clippel, F., Gommes, C. J., Goderis, B., Jacobs, P. A., & Sels, B. F. (2010). Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chemistry, 12, 1560–1563.

    Article  Google Scholar 

  • Wang, J., Xu, W., Ren, J., Liu, X., Lu, G., & Wang, Y. (2011). Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid. Green Chemistry, 13, 2678–2681.

    Article  Google Scholar 

  • Wang, Y., Wang, D., Tan, M., Jiang, B., Zheng, J., Tsubaki, N., & Wu, M. (2015). Monodispersed hollow SO3H-functionalized carbon/silica as efficient solid acid catalyst for esterification of oleic acid. ACS Applied Materials & Interfaces, 7, 26767–26775.

    Article  Google Scholar 

  • Wang, Y. T., Yang, X. X., Xu, J., Wang, H. L., Wang, Z. B., Zhang, L., Wang, S. L., & Liang, J. L. (2019). Biodiesel production from esterification of oleic acid by a sulfonated magnetic solid acid catalyst. Renewable Energy, 139, 688–695.

    Article  Google Scholar 

  • Whitney, G. (1990). Role of water in the smectite-to-illite reaction. Clay and Clay Minerals, 38, 343–350.

    Article  Google Scholar 

  • Xiao, H., Guo, Y., & Liang, X. (2010). One-step synthesis of a novel carbon-based strong acid catalyst through hydrothermal carbonization. Monatshefte für Chemie, 141, 929–932.

    Article  Google Scholar 

  • Xie, W., & Wang, H. (2021). Grafting copolymerization of dual acidic ionic liquid on core-shell structured magnetic silica: A magnetically recyclable Brönsted acid catalyst for biodiesel production by one-pot transformation of low-quality oils. Fuel, 283, 118893.

    Article  Google Scholar 

  • Xie, W., Han, Y., & Wang, H. (2018). Magnetic Fe3O4/MCM-41 composite-supported sodium silicate as heterogeneous catalysts for biodiesel production. Renewable Energy, 125, 675–681.

    Article  Google Scholar 

  • Yamashita, T., & Hayes, P. (2008). Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 254, 2441–2449.

    Article  Google Scholar 

  • Yang, J., Ao, Z., Wu, H., Zhang, S., Chi, C., Hou, C., & Qian, W. (2020). Waste paper-derived magnetic carbon composite: A novel eco-friendly solid acid for the synthesis of n-butyl levulinate from furfuryl alcohol. Renewable Energy, 146, 477–483.

    Article  Google Scholar 

  • Zeynizadeh, B., Rahmani, S., & Tizhoush, H. (2020). The immobilized Cu nanoparticles on magnetic montmorillonite (MMT@Fe3O4@Cu): As an efficient and reusable nanocatalyst for reduction and reductive-acetylation of nitroarenes with NaBH4. Polyhedron, 175, 114201.

    Article  Google Scholar 

  • Zhan, S., Tao, X., Cai, L., Liu, X., & Liu, T. (2014). The carbon material functionalized with NH2+ and SO3H groups catalyzed esterification with high activity and selectivity. Green Chemistry, 16, 4649–4653.

    Article  Google Scholar 

  • Zhang, S., Zhong, L., Yang, H., Tang, A., & Zuo, X. (2020). Magnetic carbon-coated palygorskite loaded with cobalt nanoparticles for Congo Red removal from waters. Applied Clay Science, 198, 105856.

    Article  Google Scholar 

  • Zhang, J., Jiang, W., Jiang, J., Wu, M., Shi, Y., Mao, P., & Deng, Q. (2021). One-step synthesis of sulfonated carbon/palygorskite solid-acid catalyst for the esterification of oleic acid with methanol. Clay and Clay Minerals, 69, 389–396.

Download references

Acknowledgments

This work was supported by the Six Talent Peaks Project in Jiangsu Province (No. 2018-JNHB-009), Natural Science Key Project of the Jiangsu Higher Education Institutions (19KJA430015), the Foundation of Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province (HPZ202001), and the National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization (SF201906, SF202103). The first author is grateful to Dr Nisar Ali for his help in completing the paper.

Code Availability

Not Applicable.

Funding

Funding sources are as stated in the Acknowledgements.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Mei Wu, Xingjun Yao, Jing Ouyang and Jinlong Jiang. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jinlong Jiang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not Applicable.

Consent to Participate

Not Applicable.

Consent for Publication

Not Applicable.

Additional information

Associate Editor: Hongping He

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Yao, X., Jiang, J. et al. Synthesis of Magnetic Sulfonated Carbon/Fe3O4/Palygorskite Composites and Application as a Solid Acid Catalyst. Clays Clay Miner. 70, 514–526 (2022). https://doi.org/10.1007/s42860-022-00199-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-022-00199-0

Keywords

Navigation