Skip to main content
Log in

Influence of alkali pretreatment on morphological structure and methane yield of Arachis hypogea shells

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Optimum energy recovery and economical use of lignocellulose feedstocks required an efficient breakdown of their recalcitrance characteristics. This study investigated the alkali pretreatment of underutilized Arachis hypogea shells’ structural arrangement and methane yield. The NaOH pretreatment was carried out with 1%, 2%, 3%, and 4% (w/w), an exposure time of 45 min, 30 min, 15 min, and 10 min, respectively, at an autoclave temperature of 90 ℃. The functional groups and morphological structure of the pretreated and untreated Arachis hypogea shells were investigated with Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) and digested in anaerobic condition at mesophilic temperature. Structural analysis results showed that NaOH pretreatment reduced cellulose crystallinity and altered the functional groups. At the same time, SEM images depicted disruption of the recalcitrant arrangement of Arachis hypogea shells. The methane yield was 217.63 ml/gVSadded, 222.33 ml/gVSadded, 256.78 ml/gVSadded, 219.61 ml/gVSadded, and 151.23 ml/gVSadded. This result showed that NaOH pretreatment improved the methane yield of Arachis hypogea shells and can be replicated at a commercial scale, and other lignocellulose feedstocks with similar structural arrangements can be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data is contained within the article and presented in tables and figures.

References

  1. FAOSTAT. Food and Agriculture Organisation Statistics. https://www.fao.org/faostat/en/#data/QCL. Accessed 28 Jul 2022

  2. Singh A, Raina SN, Sharma M et al (2021) Functional uses of peanut (Arachis hypogaea L.) seed storage proteins. In: Grain seed proteins functionality. https://doi.org/10.5772/INTECHOPEN.96871

  3. Nigam SN (2014) Groundnut at a glance. International Crops Research for the Semi-Arid Tropics: Patancheruvu, India

  4. Jekayinfa SO, Adebayo AO, Oniya OO, Olatunji KO (2020) Comparative analysis of biogas and methane yields from different sizes of groundnut shell in a batch reactor at mesophilic temperature. J Energy Res Rev 5:34–44. https://doi.org/10.9734/jenrr/2020/v5i130140

    Article  Google Scholar 

  5. Mardoyan A, Braun P (2015) Analysis of Czech subsidies for solid biofuels. Int J Green Energy 12. https://doi.org/10.1080/15435075.2013.841163

  6. Maroušek J, Trakal L (2022) Techno-economic analysis reveals the untapped potential of wood biochar. Chemosphere 291:133000. https://doi.org/10.1016/J.CHEMOSPHERE.2021.133000

    Article  Google Scholar 

  7. Duc PA, Dharanipriya P, Velmurugan BK, Shanmugavadivu M (2019) Groundnut shell – a beneficial bio-waste. Biocatal Agric Biotechnol 20:101206. https://doi.org/10.1016/J.BCAB.2019.101206

    Article  Google Scholar 

  8. Škapa S (2019) Vochozka M (2019) Waste energy recovery improves price competitiveness of artificial forage from rapeseed straw. Clean Technol Environ Policy 215(21):1165–1171. https://doi.org/10.1007/S10098-019-01697-X

    Article  Google Scholar 

  9. Maroušek J, Kwan JTH (2013) Use of pressure manifestations following the water plasma expansion for phytomass disintegration. Water Sci Technol 67:1695–1700. https://doi.org/10.2166/WST.2013.041

    Article  Google Scholar 

  10. Maroušek J (2014) Biotechnological partition of the grass silage to streamline its complex energy utilization. Int J Green Energy 11. https://doi.org/10.1080/15435075.2013.833930

  11. Olatunji KO, Ahmed NA (2021) Ogunkunle O (2021) Optimization of biogas yield from lignocellulosic materials with different pretreatment methods: a review. Biotechnol Biofuels 141(14):1–34. https://doi.org/10.1186/S13068-021-02012-X

    Article  Google Scholar 

  12. Paudel SR, Banjara SP, Choi OK et al (2017) Pretreatment of agricultural biomass for anaerobic digestion: current state and challenges. Bioresour Technol 245:1194–1205

    Article  Google Scholar 

  13. Şenol H (2020) Anaerobic digestion of hazelnut (Corylus colurna) husks after alkaline pretreatment and determination of new important points in logistic model curves. Bioresour Technol 300:122660. https://doi.org/10.1016/J.BIORTECH.2019.122660

    Article  Google Scholar 

  14. He Y, Pang Y, Liu Y et al (2008) Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy Fuels 22:2775–2781. https://doi.org/10.1021/ef8000967

    Article  Google Scholar 

  15. Paul S, Dutta A (2018) Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour Conserv Recycl 130:164–174. https://doi.org/10.1016/J.RESCONREC.2017.12.005

    Article  Google Scholar 

  16. Budiyono WA, Rahmawan A et al (2017) The effect of pretreatment using sodium hydroxide and acetic acid to biogas production from rice straw waste. MATEC Web Conf 101:02011. https://doi.org/10.1051/MATECCONF/201710102011

    Article  Google Scholar 

  17. Venturin B, Frumi Camargo A, Scapini T et al (2018) Effect of pretreatments on corn stalk chemical properties for biogas production purposes. Bioresour Technol 266:116–124. https://doi.org/10.1016/J.BIORTECH.2018.06.069

    Article  Google Scholar 

  18. Sarbishei S, Goshadrou A, Hatamipour MS (2021) Mild sodium hydroxide pretreatment of tobacco product waste to enable efficient bioethanol production by separate hydrolysis and fermentation. Biomass Convers Biorefinery 11:2963–2973. https://doi.org/10.1007/S13399-020-00644-X

    Article  Google Scholar 

  19. Awoyale AA (2021) Lokhat D (2021) Experimental determination of the effects of pretreatment on selected Nigerian lignocellulosic biomass in bioethanol production. Sci Reports 111(11):1–16. https://doi.org/10.1038/s41598-020-78105-8

    Article  Google Scholar 

  20. Pinpatthanapong K, Boonnorat J, Glanpracha N, Rangseesuriyachai T (2022) Biogas production by co-digestion of sodium hydroxide pretreated Napier grass and food waste for community sustainability. Energy Sources, Part A Recover Util Environ Eff 44:1678–1692. https://doi.org/10.1080/15567036.2022.2055232

    Article  Google Scholar 

  21. Salehian P, Karimi K, Zilouei H, Jeihanipour A (2013) Improvement of biogas production from pine wood by alkali pretreatment. Fuel 106:484–489. https://doi.org/10.1016/J.FUEL.2012.12.092

    Article  Google Scholar 

  22. Dahou MEA, Kouider MH, Dehmani S et al (2022) Experimental study of increase of biogas production from lagoon station’s sludge by alkaline pretreatment. https://doi.org/10.1177/0958305X221088569

  23. Kaur K, Phutela UG (2016) Enhancement of paddy straw digestibility and biogas production by sodium hydroxide-microwave pretreatment. Renew Energy 92:178–184. https://doi.org/10.1016/j.renene.2016.01.083

    Article  Google Scholar 

  24. Sambusiti C, Ficara E, Malpei F et al (2013) Effect of sodium hydroxide pretreatment on physical, chemical characteristics and methane production of five varieties of sorghum. Energy 55:449–456. https://doi.org/10.1016/J.ENERGY.2013.04.025

    Article  Google Scholar 

  25. Lahboubi N, Karouach F, Bakraoui M et al (2022) Effect of Alkali-NaOH pretreatment on methane production from anaerobic digestion of date palm waste. Ecol Eng Environ Technol 23:78–89. https://doi.org/10.12912/27197050/144846

  26. Liang YG, Cheng B, Bin SY et al (2016) Effect of solid-state NaOH pretreatment on methane production from thermophilic semi-dry anaerobic digestion of rose stalk. Water Sci Technol 73:2913–2920. https://doi.org/10.2166/WST.2016.145

    Article  Google Scholar 

  27. Olatunji KO, Ahmed NA, Madyira DM et al (2022) Performance evaluation of ANFIS and RSM modeling in predicting biogas and methane yields from Arachis hypogea shells pretreated with size reduction. Renew Energy 189:288–303. https://doi.org/10.1016/J.RENENE.2022.02.088

    Article  Google Scholar 

  28. Olatunji KO, Madyira DM, Ahmed NA, Ogunkunle O (2022) Effect of combined particle size reduction and Fe3O4 additives on biogas and methane yields of Arachis hypogea shells at mesophilic temperature. Energies 15:3983https://doi.org/10.3390/EN15113983

  29. Dahunsi SO, Oranusi S, Efeovbokhan VE (2017) Pretreatment optimization, process control, mass and energy balances and economics of anaerobic co-digestion of Arachis hypogaea (Peanut) hull and poultry manure. Bioresour Technol 241:454–464. https://doi.org/10.1016/J.BIORTECH.2017.05.152

    Article  Google Scholar 

  30. Olatunji KO, Madyira DM, Ahmed NA, Ogunkunle O (2022) Biomethane production from Arachis hypogea shells: effect of thermal pretreatment on substrate structure and yield. Biomass Convers Biorefinery 2022:1–14. https://doi.org/10.1007/S13399-022-02731-7

    Article  Google Scholar 

  31. Official Methods of Analysis, 21st Edition (2019) - AOAC INTERNATIONAL. https://www.aoac.org/official-methods-of-analysis-21st-edition-2019/. Accessed 15 Oct 2021

  32. Banoth C, Sunkar B, Tondamanati PR, Bhukya B (2017) Improved physicochemical pretreatment and enzymatic hydrolysis of rice straw for bioethanol production by yeast fermentation. 3 Biotech 7. https://doi.org/10.1007/S13205-017-0980-6

  33. Atalla RH, VanderHart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15:1–19. https://doi.org/10.1016/S0926-2040(99)00042-9

    Article  Google Scholar 

  34. organischer Stoffe Substratcharakterisierung V (2016) VEREIN DEUTSCHER INGENIEURE Characterisation of the substrate, sampling, collection of material data, fermentation tests VDI 4630 VDI-RICHTLINIEN

  35. Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597. https://doi.org/10.3168/JDS.S0022-0302(91)78551-2

    Article  Google Scholar 

  36. Rincón B, Heaven S, Banks CJ, Zhang Y (2012) Anaerobic digestion of whole-crop winter wheat silage for renewable energy production. Energy Fuels 26:2357–2364. https://doi.org/10.1021/EF201985X

    Article  Google Scholar 

  37. Buswell AM, Mueller HF (2002) Mechanism of methane fermentation. Ind Eng Chem 44:550–552. https://doi.org/10.1021/IE50507A033

    Article  Google Scholar 

  38. Ajayi-Banji AA, Rahman S, Sunoj S, Igathinathane C (2020) Impact of corn stover particle size and C/N ratio on reactor performance in solid-state anaerobic co-digestion with dairy manure. J Air Waste Manag Assoc 70:436–454. https://doi.org/10.1080/10962247.2020.1729277

    Article  Google Scholar 

  39. Siddhu MAH, Li J, Zhang J et al (2016) Improve the anaerobic biodegradability by copretreatment of thermal alkali and steam explosion of lignocellulosic waste. Biomed Res Int 2016. https://doi.org/10.1155/2016/2786598

  40. Shahid MK, Kashif A, Rout PR et al (2020) A brief review of anaerobic membrane bioreactors emphasizing recent advancements, fouling issues and future perspectives. J Environ Manage 270:110909. https://doi.org/10.1016/J.JENVMAN.2020.110909

    Article  Google Scholar 

  41. Pereira SC, Maehara L, Machado CMM, Farinas CS (2016) Physical–chemical–morphological characterization of the whole sugarcane lignocellulosic biomass used for 2G ethanol production by spectroscopy and microscopy techniques. Renew Energy 87:607–617. https://doi.org/10.1016/J.RENENE.2015.10.054

    Article  Google Scholar 

  42. Wang C, Shao Z, Qiu L et al (2021) The solid-state physicochemical properties and biogas production of the anaerobic digestion of corn straw pretreated by microwave irradiation. RSC Adv 11:3575–3584. https://doi.org/10.1039/D0RA09867A

    Article  Google Scholar 

  43. Heredia-Guerrero JA, Benítez JJ, Domínguez E et al (2014) Infrared and Raman spectroscopic features of plant cuticles: a review. Front Plant Sci 5. https://doi.org/10.3389/FPLS.2014.00305

  44. Kim S, Holtzapple MT (2006) Effect of structural features on enzyme digestibility of corn stover. Bioresour Technol 97:583–591. https://doi.org/10.1016/J.BIORTECH.2005.03.040

    Article  Google Scholar 

  45. Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioprod Biorefining 6:465–482. https://doi.org/10.1002/BBB.1331

    Article  Google Scholar 

  46. Rajput AA, Zeshan VC (2018) Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw. J Environ Manage 221:45–52. https://doi.org/10.1016/J.JENVMAN.2018.05.011

    Article  Google Scholar 

  47. Wang P, Howard BH (2017) Impact of thermal pretreatment temperatures on woody biomass chemical composition, physical properties and microstructure. Energies (Basel) 11. https://doi.org/10.3390/EN11010025

  48. Loow YL, Wu TY, Jahim JM et al (2016) (2016) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellul 233(23):1491–1520. https://doi.org/10.1007/S10570-016-0936-8

    Article  Google Scholar 

  49. Manokhoon P, Rangseesuriyachai T (2020) Effect of two-stage sodium hydroxide pretreatment on the composition and structure of Napier grass (Pakchong 1) (Pennisetum purpureum). Int J Green Energy 17:864–871. https://doi.org/10.1080/15435075.2020.1809425

    Article  Google Scholar 

  50. Gaspillo P-A, wunna kyaw, Editors G, et al (2017) Effect of alkali pretreatment on removal of lignin from sugarcane bagasse. Chem Eng Trans 56:. https://doi.org/10.3303/CET1756306

  51. Li J, Zhang J, Zhang S et al (2018) Alkali lignin depolymerization under eco-friendly and cost-effective NaOH/urea aqueous solution for fast curing bio-based phenolic resin. Ind Crops Prod 120:25–33. https://doi.org/10.1016/J.INDCROP.2018.04.027

    Article  Google Scholar 

  52. Şenol H, Erşan M, Görgün E (2020) Optimization of temperature and pretreatments for methane yield of hazelnut shells using the response surface methodology. Fuel 271:117585. https://doi.org/10.1016/J.FUEL.2020.117585

    Article  Google Scholar 

  53. Koyama M, Yamamoto S, Ishikawa K et al (2017) Inhibition of anaerobic digestion by dissolved lignin derived from alkaline pretreatment of an aquatic macrophyte. Chem Eng J 311:55–62. https://doi.org/10.1016/j.cej.2016.11.076

    Article  Google Scholar 

  54. Thota SP, Badiya PK, Yerram S et al (2017) Macro-micro fungal cultures synergy for innovative cellulase enzymes production and biomass structural analyses. Renew Energy 103:766–773. https://doi.org/10.1016/J.RENENE.2016.11.010

    Article  Google Scholar 

  55. Dahunsi SO, Oranusi S, Efeovbokhan VE (2017) Optimization of pretreatment, process performance, mass and energy balance in the anaerobic digestion of Arachis hypogaea (Peanut) hull. Energy Convers Manag 139:260–275. https://doi.org/10.1016/J.ENCONMAN.2017.02.063

    Article  Google Scholar 

  56. Maroušek J (2012) (2012) Pretreatment of sunflower stalks for biogas production. Clean Technol Environ Policy 154(15):735–740. https://doi.org/10.1007/S10098-012-0548-4

    Article  Google Scholar 

  57. Maroušek J, Strunecký O, Kolář L et al (2020) Advances in nutrient management make it possible to accelerate biogas production and thus improve the economy of food waste processing. Energy Sources, Part A Recover Util Environ Eff. https://doi.org/10.1080/15567036.2020.1776796

    Article  Google Scholar 

  58. Stávková J, Maroušek J (2021) Novel sorbent shows promising financial results on P recovery from sludge water. Chemosphere 276:130097. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130097

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology – KOO; original draft – KOO; first draft review and supervision – DMM; co-supervision – NAA and OO. All authors read and agreed with the manuscript.

Corresponding author

Correspondence to Kehinde O. Olatunji.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olatunji, K.O., Madyira, D.M., Ahmed, N.A. et al. Influence of alkali pretreatment on morphological structure and methane yield of Arachis hypogea shells. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03271-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03271-w

Keywords

Navigation