Skip to main content
Log in

Dynamic pathways for the bioconvection in thermally activated rotating system

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This article communicates Cattaneo-Christov heat and mass flux theory in the flow of Maxwell nanofluid and gyrotactic microorganisms towards a spinning disk with the effects of Hall current, and Darcy porous medium. Entropy generation is also taken into account in the presence of Brownian motion, thermophoresis, thermal radiation, heat source/sink, and chemical reaction. Non-dimensional equations are derived for the velocities, temperature, nanoparticles concentration, and motile gyrotactic microorganisms concentration with the help of similarity transformations. Homotopy analysis method (HAM) is used to obtain the solution. Graphs and a table are plotted to show the effects of physical parameters. Numerical computations are given to analyze the values of skin friction coefficients which present a nice agreement with the published results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52

Similar content being viewed by others

Data availability

Upon reasonable request to the corresponding author, the data will be provided.

Abbreviations

m :

Hall parameter

(u, v, w):

Velocity components

(r, \(\vartheta\), z):

Cylindrical coordinates

a :

Stretching rate

Sc :

Schmidt number

\({k_{r}}\) :

Dimensional chemical reaction parameter

k\(_{c}\) :

Non-dimensional chemical reaction parameter

M :

Magnetic field parameter

Pr :

Prandtl number

\(E^{\prime \prime \prime }_{gen}\) :

Entropy generation

\(E^{\prime \prime \prime }_{0}\) :

Characteristic entropy generation

\(N_{G}\) :

Non-dimensional entropy generation rate

Le :

Lewis number

Pe :

Peclet number

Nb :

Brownian motion parameter

Nt :

Thermophoresis parameter

R :

Ideal gas constant

Br :

Brinkman number

\({C_{i}}\), i = 1, 2, 3..., 11:

Arbitrary constants

Re :

Reynolds number

T :

Temperature

C :

Nanoparticles concentration

N :

Motile microorganisms concentration

P :

Pressure

\({c_{P}}\) :

Specific heat at constant pressure

\({D_{B}}\) :

Diffusivity

B :

Chemical species

\({f^{\prime }}(\zeta )\) :

Dimensionless radial velocity

\({g}(\zeta )\) :

Dimensionless azimuthal velocity

\({h}(\zeta )\) :

Dimensionless axial velocity

\({B_{0}}\) :

Applied magnetic field strength

\(\varvec{L}\) :

Linear operator

\(\Omega\) :

Angular velocity

\(\sigma\) :

Electrical conductivity

\(\psi\) :

Stream function

\(\zeta\) :

Similarity variable

\(\phi (\zeta )\) :

Dimensionless nanoparticles concentration

\(\theta (\zeta )\) :

Dimensionless temperature

\(\chi (\zeta )\) :

Dimensionless gyrotactic microorganisms concentration

\(\lambda _{1}\) :

Relaxation time parameter

\(\gamma _{1}\) :

Thermal relaxation time parameter

\(\gamma _{2}\) :

Mass relaxation time parameter

\(\gamma _{3}\) :

Non-dimensional thermal relaxation time parameter

\(\gamma _{4}\) :

Non-dimensional solutal time relaxation parameter

\(\gamma _{5}\) :

Gyrotactic microorganisms concentration difference parameter

\(\gamma _{6}\) :

Temperature difference parameter

\(\gamma _{7}\) :

Diffusion constant parameter

\(\nu\) :

Kinematic viscosity

\(\mu\) :

Dynamic viscosity

\(\rho\) :

Density

\(\alpha\) :

Thermal diffusivity

\(\Omega _{1}\) :

Dimensionless stretching parameter

f:

Base fluid

\({\prime }\) :

Differentiation with respect to \(\zeta\)

References

  1. Wang F, Rehman S, Bouslimi J, Khaliq H, Qureshi MI, Kamran M, Alharbi AN, Ahmad H, Farooq A (2021) Comparative study of heat and mass transfer of generalized MHD Oldroyd-B bio-nano fluid in a permeable medium with ramped conditions. Sci Rep 11:23454. https://doi.org/10.1038/s41598-021-02326-8

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Farooq U, Waqas H, Khan MI, Khan SU, Chu YM, Kadry S (2021) Thermally radioactive bioconvection flow of Carreau nanofluid with modified Cattaneo-Christov expressions and exponential space-based heat source. Alex Eng J 60:3073–3086. https://doi.org/10.1016/j.aej.2021.01.050

    Article  Google Scholar 

  3. Alzahrani J, Vaidya H, Prasad KV, Rajashekhar C, Mahendra DL, Tlili I (2022) Micropolar fluid flow over a unique form of vertical stretching sheet: special emphasis to temperature-dependent properties. Case Stud Therm Eng 34:102037. https://doi.org/10.1016/j.csite.2022.102037

    Article  Google Scholar 

  4. Ahmad S, Nadeem S, Khan MN (2022) Heat enhancement analysis of the hybridized micropolar nanofluid with Cattaneo-Christov and stratification effects. J Mech Eng Sci 234(2):943–955. https://doi.org/10.1177/09544062211010833

    Article  CAS  Google Scholar 

  5. Song YQ, Farooq A, Kamran M, Rehman S, Tamoor M, Khan R, Fahad A, Qureshi MI (2021) Analytical solution of fractional Oldroyd-B fluid via fluctuating duct. Complexity 2021(9576873):1–16. https://doi.org/10.1155/2021/9576873

    Article  Google Scholar 

  6. Almutairi B, Kamran M, Farooq A, Ahmad H, Shahzad A, Khan FU, Khan AS, Almohsen B (2022) On the Taylor-Couette flow of fractional oldroyd-B fluids in a cylindrically symmetric configuration using transforms. Int J Modern Phys C. https://doi.org/10.1142/S0129183122500991

  7. Tlili I, Sajadi SM, Baleanu D, Ferial Ghaemi F (2022) Flat sheet direct contact membrane distillation study to decrease the energy demand for solar desalination purposes. Sustain Energy Technol Assess 52:102100. https://doi.org/10.1016/j.seta.2022.102100

    Article  Google Scholar 

  8. Zhanga J, Sajadi SM, Chen Y, Tlili I, Fagirye MA (2022) Effects of Al\(_{2}\)O\(_{3}\) and TiO\(_{2}\) nanoparticles in order to reduce the energy demand in the conventional buildings by integrating the solar collectors and phase change materials. Sustain Energy Technol Assess 52:102114. https://doi.org/10.1016/j.seta.2022.102114

    Article  Google Scholar 

  9. Tlili I, Alharbi T (2022) Investigation into the effect of changing the size of the air quality and stream to the trombe wall for two different arrangements of rectangular blocks of phase change material in this wall. J Building Eng 52:104328. https://doi.org/10.1016/j.jobe.2022.104328

    Article  Google Scholar 

  10. Qia X, Sidi MO, Tlili T, Ibrahim TK, Elkotb MA, El-Shorbagy MA, Li Z (2022) Optimization and sensitivity analysis of extended surfaces during melting and freezing of phase changing materials in cylindrical Lithium-ion battery cooling. J Energy Storage 51:104545. https://doi.org/10.1016/j.est.2022.104545

    Article  Google Scholar 

  11. Gao J, Liu J, Yue H, Zhao Y, Tlili I, Karimipour A (2022) Effects of various temperature and pressure initial conditions to predict the thermal conductivity and phase alteration duration of water based carbon hybrid nanofluids via MD approach. J Mol Liquid 351:118654. https://doi.org/10.1016/j.molliq.2022.118654

    Article  CAS  Google Scholar 

  12. Mahmood RT, Asad MJ, Hadri SH, El-Shorbagy MA, Mousa AAA, Dara RN, Awais M, Tlili I (2022) Bioremediation of textile industrial effluents by Fomitopsis pinicola IEBL-4 for environmental sustainability. Human Ecol Risk Assess: An Int J 351:1–18. https://doi.org/10.1080/10807039.2022.2057277

    Article  CAS  Google Scholar 

  13. Nayak MK, Mabood F, Dogonchi AS, Ramadan KM, Tlili I, Khan WA (2022) Entropy optimized assisting and opposing non-linear radiative flow of hybrid nanofluid. Waves Random Complex Media 1–22. https://doi.org/10.1080/17455030.2022.2032474

  14. Ramadan KM, Qisieh O, Tlili I (2022) Thermal creep effects on fluid flow and heat transfer in a microchannel gas cooling. J Mech Eng Sci 236(9):5033–5047. https://doi.org/10.1177/09544062211057039

    Article  Google Scholar 

  15. Khan MN, Ahmad S, Ahammad NA, Alqahtani T, Algarni S (2022) Numerical investigation of hybrid nanofluid with gyrotactic microorganism and multiple slip conditions through a porous rotating disk. Waves Random Complex Media 1–16. https://doi.org/10.1080/17455030.2022.2055205

  16. Ahmad S, Khan MN, Nadeem S (2022) Numerical investigation of hybrid nanofluid with gyrotactic microorganism and multiple slip conditions through a porous rotating disk. Int J Ambient Energy 1–11. https://doi.org/10.1080/01430750.2022.2029765

  17. Ahmad S, Nadeem S (2021) Hybridized nanofluid with stagnation point past a rotating disk. Phys Scr 96:025214. https://doi.org/10.1088/1402-4896/abcfef

    Article  ADS  CAS  Google Scholar 

  18. Ahmad S, Nadeem S, Khan MN (2021) Mixed convection hybridized micropolar nanofluid with triple stratification and Cattaneo-Christov heat flux model. Phys Scr 96:075205. https://doi.org/10.1088/1402-4896/abf615

    Article  ADS  Google Scholar 

  19. Khan NS, Shah Q, Sohail A (2020) Dynamics with Cattaneo-Christov heat and mass flux theory of bioconvection Oldroyd-B nanofluid. Adv Mech Eng 12(7):1–20. https://doi.org/10.1177/1687814020930464

    Article  CAS  Google Scholar 

  20. Irfan M, Khan M, Gulzar MM, Khan WA (2020) Chemically reactive and nonlinear radiative heat flux in mixed convection flow of Oldroyd-B nanofluid. Appl Nanosci 10:3133–3141. https://doi.org/10.1007/s13204-019-01052-y

    Article  ADS  CAS  Google Scholar 

  21. Khan M, Irfan M, Khan W, Sajid M (2019) Consequence of convective conditions for flow of Oldroyd-B nanofluid by a stretching cylinder. J Braz Soci Mech Sci Eng 41:116. https://doi.org/10.1007/s40430-019-1604-3

    Article  CAS  Google Scholar 

  22. Irfan M, Khan M, Khan WA (2019) Impact of non-uniform heat sink source and convective condition in radiative heat transfer to Oldroyd-B nanofluid: a revised proposed relation. Phys Letters A 383(4):376–382. https://doi.org/10.1016/j.physleta.2018.10.040

    Article  ADS  MathSciNet  CAS  Google Scholar 

  23. Hafeez A, Khan M, Ahmed J, Ahmed J (2020) Rotational flow of Oldroyd-B nanofluid subject to Cattaneo-Christov double diffusive theory. Appl Math Mech Engl Ed 41(7):1083–1094. https://doi.org/10.1007/s10483-020-2629-9

    Article  Google Scholar 

  24. Usman AH, Khan NS, Humphries UW, Ullah Z, Shah Q, Kumam P, Thounthong P, Khan W, Kaewkhao Bhaumik (2021) Computational optimization for the deposition of bioconvection thin Oldroyd-B nanofluid with entropy generation. Sci Rep 11(1):11641. https://doi.org/10.1038/s41598-021-91041-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Khan N, Hashmi MS, Khan SU, Chaudhery F, Tlili I, Shadloo MS (2020) Effects of homogeneous and heterogeneous chemical features on Oldroyd-B fluid flow between stretching disks with velocity and temperature boundary assumptions. Math Prob Eng 2020:5284906. https://doi.org/10.1155/2020/5284906

    Article  MathSciNet  CAS  Google Scholar 

  26. Hashmi MS, Khan N, Khan SU, Rashidi MM (2017) A mathematical model for mixed convective flow of chemically reactive Oldroyd-B fluid between isothermal stretching disks. Res Phys 7:3016–3023. https://doi.org/10.1016/j.rinp.2017.08.017

    Article  Google Scholar 

  27. Tong ZW, Khan SU, Vaidya H, Rajashekhar R, Sun TC, Khan MI, Prasad KV, Chinram R, Aly AA (2021) Nonlinear thermal radiation and activation energy significances in slip flow of bioconvection of Oldroyd-B nanofluid with with Cattaneo-Christov theories. Case Stud Therm Eng 26:101069. https://doi.org/10.1016/j.csite.2021.101069

    Article  Google Scholar 

  28. Hashmi MS, Khan N, Khan SU, Khan MI, Khan NB, Nazeer M, Kadry S, Chu YM (2021) Dynamics of coupled reacted flow of Oldroyd-B material induced by isothermal/exothermal stretched disks with Joule heating, viscous dissipation and magnetic dipoles. Alex Eng J 60(1):767–783. https://doi.org/10.1016/j.aej.2020.10.007

    Article  Google Scholar 

  29. Irfan M, Khan M, Khan WA (2018) On model for three-dimensional Carreau fluid flow with Cattaneo-Christov double diffusion and variable conductivity: a numerical approach. J Braz Soci Mech Sci Eng 40:577. https://doi.org/10.1007/s40430-018-1498-5

    Article  Google Scholar 

  30. Irfan M, Khan M, Muhammad T, Waqas M, Khan WA (2022) Analysis of energy transport considering Arrhenius activation energy and chemical reaction in radiative Maxwell nanofluid flow. Chem Phys Letter 793:139323. https://doi.org/10.1016/j.cplett.2021.139323

    Article  CAS  Google Scholar 

  31. Irfan M (2021) Study of Brownian motion and thermophoretic diffusion on non-linear mixed convection flow of Carreau nanofluid subject to variable properties. Surf Interf 23:100926. https://doi.org/10.1016/j.surfin.2021.100926

    Article  CAS  Google Scholar 

  32. Khan NS, Zuhra S, Shah Z, Bonyah E, Islam S, Khan W, Khan A (2019) Hall current and thermophoresis effects on magnetohydrodynamic mixed convective heat and mass transfer thin film flow. J Phys Commun 3:035009. https://doi.org/10.1088/2399-6528/aaf830

    Article  CAS  Google Scholar 

  33. Khan NS, Gul T, Islam S, Khan W (2017) Thermophoresis and thermal radiation with heat and mass transfer in a magnetohydrodynamic thin film second-grade fluid of variable properties past a stretching sheet. Eur Phys J Plus 132:11. https://doi.org/10.1140/epjp/i2017-11277-3

    Article  CAS  Google Scholar 

  34. Khan NS, Gul T, Kumam P, Shah Z, Khan W, Islam S, Zuhra S, Sohail A (2019) Influence of inclined magnetic field on Carreau nanoliquid thin film flow and heat transfer with graphene nanoparticles. Energies 12:1459. https://doi.org/10.3390/en12081459

    Article  CAS  Google Scholar 

  35. Waqas H, Hussain M, Alqarnib MS, Eid MR, Muhammad T (2021) Numerical simulation for magnetic dipole in bioconvection flow of Jeffrey nanofluid with swimming motile microorganisms. Waves Random Complex Media 1–18. https://doi.org/10.1080/17455030.2021.1948634

  36. Raja MAZ, Khan Z, Zuhra S, Chaudhary NI, Khan WU, He Y, Islam S, Shoaib M (2021) Cattaneo-Christov heat flux model of 3D hall current involving bioconvection nanofluidic flow with Darcy-Forchheimer law effect: backpropagation neural networks approach. Case Stud Therm Eng 26:101168. https://doi.org/10.1016/j.csite.2021.101168

    Article  Google Scholar 

  37. Waqas H, Imran M, Muhammad T, Salt SM, Ellahi R (2021) Numerical investigation on bioconvection flow of Oldroyd-B nanofluid with non-linear thermal radiation and motile microorganisms over rotating disk. J Therm Anal Calor 145:523–539. https://doi.org/10.1007/s10973-020-09728-2

    Article  CAS  Google Scholar 

  38. Khan NS, Shah Q, Sohail A, Kumam P, Thounthong P, Muhammad T (2021) Mechanical aspects of Maxwell nanofluid in dynamic system with irreversible analysis. Z Angew Math Mech 8:e202000212. https://doi.org/10.1002/zamm.202000212

    Article  MathSciNet  Google Scholar 

  39. Khan NS, Kumam P, Thounthong P (2019) Renewable energy technology for the sustainable development of thermal system with entropy measures. Int J Heat Mass Transf 145:118713. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118713

    Article  CAS  Google Scholar 

  40. Khan NS (2018) Bioconvection in second grade nanofluid flow containing nanoparticles and gyrotactic microorganisms. Braz J Phys 43:227–241. https://doi.org/10.1007/s13538-018-0567-7

    Article  ADS  CAS  Google Scholar 

  41. Khan NS, Gul T, Khan MA, Bonyah E, Islam S (2017) Mixed convection in gravity-driven thin film non-Newtonian nanofluids flow with gyrotactic microorganisms. Result Phys 7:4033–4049. https://doi.org/10.1016/j.rinp.2017.10.017

    Article  ADS  Google Scholar 

  42. Khan NS (2019) Mixed convection in MHD second grade nanofluid flow through a porous medium containing nanoparticles and gyrotactic microorganisms with chemical reaction. Filomat 33:4627–4653. https://doi.org/10.2298/FIL1914627K

    Article  MathSciNet  Google Scholar 

  43. Khan NS, Shah Z, Shutaywi M, Kumam P, Thounthong P (2020) A comprehensive study to the assessment of Arrhenius activation energy and binary chemical reaction in swirling flow. Sci Rep 10:7868. https://doi.org/10.1038/s41598-020-64712-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ramesha K, Khan SU, Jameel M, Khan MI, Chu YM, Kadry S (2020) Bioconvection assessment in Maxwell nanofluid configured by a Riga surface with nonlinear thermal radiation and activation energy. Surf Interf 21:100749. https://doi.org/10.1016/j.surfin.2020.100749

    Article  CAS  Google Scholar 

  45. Liu C, Khan MU, Ramzan M, Chu YM, Kadry S, Malik MY, Chinram R (2021) Nonlinear radiative Maxwell nanofluid flow in a Darcy-Forchheimer permeable media over a stretching cylinder with chemical reaction and bioconvection. Sci Rep 11:9391. https://doi.org/10.1038/s41598-021-88947-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ramzan M, Gul H, Kadry S, Chu YM (2021) Role of bioconvection in a three dimensional tangent hyperbolic partially ionized magnetized nanofluid flow with Cattaneo-Christov heat flux and activation energy. Int Commun Heat Mass Transf 120:104994. https://doi.org/10.1016/j.icheatmasstransfer.2020.104994

    Article  CAS  Google Scholar 

  47. Song YQ, Khan SA, Imran M, Waqas H, Khan SU, Khan MI, Qayyum S, Chu YM (2021) Applications of modified Darcy law and nonlinear thermal radiation in bioconvection flow of micropolar nanofluid over an off centered rotating disk. Alex Eng J 60:4607–4618. https://doi.org/10.1016/j.aej.2021.03.053

    Article  Google Scholar 

  48. Song YQ, Waqas H, Al-Khaled K, Farooq M, Khan SU, Khan MI, Chu YM, Qayyum S (2021) Bioconvection analysis for Sutterby nanofluid over an axially stretched cylinder with melting heat transfer and variable thermal features: a Marangoni and solutal model. Alex Eng J 60:4663–4675. https://doi.org/10.1016/j.aej.2021.03.056

    Article  Google Scholar 

  49. Abdal S, Siddique I, Afzal S, Chu YM, Ahmadian A, Salahshour S (2021) On development of heat transportation through bioconvection of Maxwell nanofluid flow due to an extendable sheet with radiative heat flux and prescribed surface temperature and prescribed heat flux conditions. Math Meth Appl Sci 1–18. https://doi.org/10.1002/mma.7722

  50. Chu YM, Rahman MU, Khan MI, Kadry S, Rehman WU, Abdelmalek Z (2021) Heat transport and bio-convective nanomaterial flow of Walter’s-B fluid containing gyrotactic microorganisms. Ain Shams Eng J 12(3):3071–3079. https://doi.org/10.1016/j.asej.2020.10.025

    Article  Google Scholar 

  51. Zhao TH, Khan MI, Chu YM (2020) Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks. Math Meth Appl Sci 1–19. https://doi.org/10.1002/mma.7310

  52. Shah F, Khan MI, Chu YM, Kadry S (2020) Heat transfer analysis on MHD flow over a stretchable Riga wall considering entropy generation rate: a numerical study. Num Methods Partial Differential Eq 1–17. https://doi.org/10.1002/num.22694

  53. Qayyum S, Khan MI, Masood F, Chu YM, Kadry S, Nazeer M (2019) Interpretation of entropy generation in Williamson fluid flow with nonlinear thermal radiation and first-order velocity slip. Math Meth Appl Sci 1–10. https://doi.org/10.1002/mma.6735

  54. Khan MI, Qayyum S, Chu YM, Kadry S (2020) Numerical simulation and modeling of entropy generation in Marangoni convective flow of nanofluid with activation energy. Num Methods Partial Differential Eq 1–11. https://doi.org/10.1002/num.22610

  55. Khan NS, Zuhra S, Shah Q (2019) Entropy generation in two phase model for simulating flow and heat transfer of carbon nanotubes between rotating stretchable disks with cubic autocatalysis chemical reaction. Appl Nanosci 9:1797–1822. https://doi.org/10.1007/s13204-019-01017-1

    Article  ADS  CAS  Google Scholar 

  56. Khan NS, Shah Q, Bhaumik A, Kumam P, Thounthong P, Amiri I (2020) Entropy generation in bioconvection nanofluid flow between two stretchable rotating disks. Sci Rep 10:4448. https://doi.org/10.1038/s41598-020-61172-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Khan NS, Shah Z, Islam S, Khan I, Alkanhal TA, Tlili I (2019) Entropy generation in MHD mixed convection non-Newtonian second-grade nanoliquid thin film flow through a porous medium with chemical reaction and stratification. Entropy 21:139. https://doi.org/10.3390/e21020139

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  58. Usman AH, Khan NS, Rano SA, Humphries UW, Kumam P (2021) Computational investigations of Arrhenius activation energy and entropy generation in a viscoelastic nanofluid flow thin film sprayed on a stretching cylinder. J Adv Res Fluid Mech Therm 86(1):27–51. https://doi.org/10.37934/arfmts.86.1.2751

    Article  Google Scholar 

  59. Ramzan M, Khan NS, Kumam P (2021) Mechanical analysis of non-Newtonian nanofluid past a thin needle with dipole effect and entropic characteristics. Sci Rep 11(1):19378. https://doi.org/10.1038/s41598-021-98128-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Khan NS, Humphries UW, Kumam W, Kumam P, Muhammad T (2022) Bioconvection Casson nanoliquid film sprayed on a stretching cylinder in the portfolio of homogeneous-heterogeneous chemical reactions. Z Angew Math Mech 8:e2020000222. https://doi.org/10.1002/zamm.202000212

    Article  Google Scholar 

  61. Shijun L (2004) On the homotopy analysis method for non-linear problems. Appl Math Comput 147(2):499–513. https://doi.org/10.1016/S0096-3003(02)00790-7

    Article  MathSciNet  Google Scholar 

  62. Ahmed A, Khan M, Ahmed J, Hafeez A (2020) Von Karman rotating flow of Maxwell nanofluids featuring the Cattaneo-Christov theory with a Buongiorno model. Appl Math Mech -Engl Ed 41(8):1195–1208. https://doi.org/10.1007/s10483-020-2632-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the respectable reviewers for their comments and suggestions. The authors acknowledge the financial support provided by the Center of Excellence in Theoretical and Computational Science (TaCS-CoE), KMUTT. Moreover, this research was supported by The Science, Research and Innovation Promotion Funding (TSRI) (Grant no. FRB650070/0168). This research block grants was managed under Rajamangala University of Technology Thanyaburi (FRB65E0633M.2). The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia for funding this work through research groups program under grant number RGP.1/248/43. The first author is thankful to the Higher Education Commission (HEC) Pakistan for funding through the SRGP project No. 10534.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization: Noor Saeed Khan, methodology: Poom Kumam, formal analysis: Usa Wannasingha Humphries, investigation: Wiyada Kumam, resources: Noor Saeed Khan, supervision: Taseer Muhammad, writing—original draft: Taseer Muhammad, writing—review and editing: Noor Saeed Khan.

Corresponding authors

Correspondence to Noor Saeed Khan, Usa Wannasingha Humphries or Poom Kumam.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, N.S., Humphries, U.W., Kumam, W. et al. Dynamic pathways for the bioconvection in thermally activated rotating system. Biomass Conv. Bioref. 14, 8605–8623 (2024). https://doi.org/10.1007/s13399-022-02961-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02961-9

Keywords

Navigation