Skip to main content
Log in

Mechanical and surface characterization of sisal fibers after cold glow discharge argon plasma treatment

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this investigation, the influence of various plasma powers 80 W and 120 W for 30 min on mechanical as well as surface characteristics of unidirectional sisal fibers surface treated using cold glow discharge argon plasma had been explored. Agave sisalana is a rosette-forming succulent plant farmed primarily for its fibers, which have been extracted from the leaves. Sisal fibers possess low in compactness, ubiquitous, and environmentally friendly, although they typically exhibit problems such as hydrophilicity and performance. Per our observations, the cold glow discharge argon plasma modification provided the sisal fiber-reinforced epoxy composite (SFREC) with nearly 50.32% significantly greater interlaminar shear strength, 48.66% significantly greater flexural strength, 48.74% elongation at break, and 30.919% significantly greater tensile strength compared to the untreated sisal fiber-reinforced epoxy laminate. Overall morphological features for cold glow discharge argon plasma-treated sisal fibers had been compared to the untreated sisal fibers using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD), revealing an improvement in fiber surface structure. FTIR particularly revealed the influence of oxidation of basic constituents of the sisal fiber and/or a reduction of both phenolic and secondary alcohol groups leading hydrophobicity after the surface modification. Furthermore, XRD analysis reveals the cold glow discharge plasma Ar alteration increased crystallite size and crystallinity by eradicating some undesirable elements of the sisal fiber and rearranging the crystalline zones. Hence, sisal fibers might well be exploited for industrial application after becoming surface treated to accomplish the aim of fostering self-sustaining biodegradable natural resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets supporting the conclusions of this article are included within the article and its additional files (i.e., tables, line figures).

References

  1. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, Biodegradable polymers, and biocomposites: an overview. Macromol Mater Eng 1:276–277

    Google Scholar 

  2. Ho M, Wang H, Lee J, Hoc C, Lau K, Leng J, Hui D (2012) Critical factors on manufacturing processes of natural fibre composites. Compos Part B 43(8):3549–3562

    Article  Google Scholar 

  3. Pereira CL, Savastano H Jr, Payá J, Santos SF, Borrachero MV, Monzó J, Soriano L (2013) Use of highly reactive rice husk ash in the production of cement matrix reinforced with green coconut fiber. Ind Crop Prod 49(8):88–96

    Article  Google Scholar 

  4. Li Y, Mai YW, Ye L (2000) Sisal fiber and its composites: a review of recent developments. Compos Sci Technol 60(11):2037–2055

    Article  Google Scholar 

  5. Ochi S (2008) Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech Mater 4(5):446–452

    Article  Google Scholar 

  6. Dittenber DB, Rao GHVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos A Appl Sci Manuf 43(8):1419–1429

    Article  Google Scholar 

  7. Strobel M, Lyons CS, Mittal KL (eds) (1994) Plasma surface modification of polymers: relevance to adhesion. CRC Press, Boca Raton, FL

    Google Scholar 

  8. Rachini A, Mougin G, Delalande S, Charmeau J-Y, Barres C, Fleury E (2012) Hemp fibers polypropylene composites by reactive compounding: improvement of physical properties promoted by selective coupling chemistry. Polym Degrad Stab 97:1988–1995

    Article  Google Scholar 

  9. Kazayawoko M, Balatinecz J, Matuana L (1999) Surface modification and adhesion mechanisms in wood fiber-polypropylene composites. J Mater Sci 34:6189–6199

    Article  Google Scholar 

  10. Bledzki A, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59:1329–1336

    Article  Google Scholar 

  11. Goldman M, Goldman A, Sigmond RS (1985) The corona discharge, its properties and specific uses. Pure Appl Chem 57:1353–1362

    Article  Google Scholar 

  12. Bhatnagar N, Jha S, Bhowmik S (2011) Energy dispersive spectroscopy study of surface modified PEEK. Adv Mater Lett 2:52–57

    Article  Google Scholar 

  13. Inagaki N (1996) Plasma surface modification and plasma polymerization (1st ed). CRC Press. https://doi.org/10.1201/9781498710831

  14. Yasuda H (1995) Plasma polymerization and plasma modification of polymer surfaces. In: Ebdon JR, Eastmond GC (eds) New methods of polymer synthesis. Springer, Dordrechtt. https://doi.org/10.1007/978-94-011-0607-8_5

  15. Bhatnagar N (2013) Effect of plasma on adhesion characteristics of high performance polymers: a critical review. Rev Adhesion Adhesives 1:397–412

    Article  Google Scholar 

  16. Mukhopadhyay S, Pal R, Narula V, Mayank M (2013) A study of interface behavior in sisal fibre composites single fibre pull out test. Indian J Fibre Text Res 38(1):87–91

    Google Scholar 

  17. Bozaci E, Sever K, Demir A, Seki Y, Sarikanat M, Ozdogan E (2009) Effect of the atmospheric plasma treatment parameters on surface and mechanical properties of jute fabric. Fibers Polym 10:781e6. https://doi.org/10.1007/s12221-009-0781-6

    Article  Google Scholar 

  18. Chen C, Chen JC, Yao WH (2010) Argon plasma treatment for improving the physical properties of crosslinked cotton fabrics with dimethyl oldi hydroxy ethylene urea acrylic acid. Text Res J 80(8):675–682

    Article  Google Scholar 

  19. Gupta US, Dhamarikar M, Dharkar A, Chaturvedi S, Kumrawat A, Giri N, Tiwari S, Namdeo R (2021) Plasma modification of natural fiber: a review. Mater Today Proc 43:451–457

    Article  Google Scholar 

  20. Wang GJ, Liu YW, Guo YJ, Zhang ZX, Xu MX, Yang ZX (2007) Surface modification and characterizations of basalt fibers with non-thermal plasma. Surf Coat Technol 201:6565–6568

    Article  Google Scholar 

  21. Zhou Z, Liu X, Hu B, Wang J, Xin D, Wang Z, Qiu Y (2011) Hydrophobic surface modification of ramie fibers with ethanol pretreatment and atmospheric pressure plasma treatment. Surf Coat Technol 205:4205–4210

    Article  Google Scholar 

  22. Kamlangkla K, Paosawatyanyong B, Pavarajarn V, Hodak JH, Hodak SK (2010) Mechanical strength and hydrophobicity of cotton fabric after SF6 plasma treatment. Appl Surf Sci 256(20):5888–5897

    Article  Google Scholar 

  23. Sun D, Stylios G (2006) Fabric surface properties affected by low temperature plasma treatment. J Mater Process Technol 173(2):172–177

    Article  Google Scholar 

  24. Balaji A, Karthikeyan B, Swaminathan J (2019) Comparative mechanical, thermal, and morphological study of untreated and NaOH-treated bagasse fiber-reinforced cardanol green composites. Adv Compos Hybrid Mater 2(1):25–132

    Google Scholar 

  25. Jacob M, Thomas S, Varughese KKT (2004) Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos Sci Technol 64(7–8):955–965

    Article  Google Scholar 

  26. Bisanda ETN, Ansell MP (1991) The effect of silane treatment on the mechanical and physical properties of sisal-epoxy composites. Compos Sci Technol 41:165–178

    Article  Google Scholar 

  27. Marais S, Gouanve F, Bonnesoeur A, Grenet J, Poncin-Epaillard F, Morvan C, Métayer M (2005) Unsaturated polyester composites reinforced with flax fibers: effect of cold plasma and autoclave treatments on mechanical and permeation properties Composites Part A. Appl Sci Manuf 36(7):975–986. https://doi.org/10.1016/j.compositesa.2004.11.008 (ISSN 1359-835X)

    Article  Google Scholar 

  28. Wang L, Xiang Z-Q, Bai Y-L et al (2013) A plasma aided process for grey cotton fabric pretreatment. J Cleaner Prod 54:323–331

    Article  Google Scholar 

  29. Jang J, Yang H (2000) The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites. J Mater Sci 35:2297–2303. https://doi.org/10.1023/A:1004791313979

    Article  Google Scholar 

  30. Kan CW, Han K, Yuen CWM, Miao MH (1998) Surface properties of low-temperature plasma treated wool fabrics. J Mater Process Technol 83(1–3):180–184 (ISSN 0924-0136)

    Article  Google Scholar 

  31. Karmaker AC, Hoffmann A, Hinrichen G (1994) Influence of water uptake on the mechanical properties of jute fiber-reinforced polypropylene. J Appl Polym Sci 54:1803–1807

    Article  Google Scholar 

  32. Mohanty S, Nayak SK, Verma SK, Tripathy SS (2004) Effect of MAPP as a coupling agent on the performance of jute–pp composites. J Reinf Plast Compos 23:625–637

    Article  Google Scholar 

  33. Xie XL, Fung KL, Li RKY, Tjong SC, Mai YW (2002) Structural and mechanical behavior of polypropylene=maleated styrene (ethylene-co-butylene)-styrene-sisal fiber composites prepared by injection molding. J Polym Sci Pt B: Polym Phys 40:1214–1222

    Article  Google Scholar 

  34. Yuan X, Jayaraman K, Bhattacharyya D (2004) Effects of plasma treatment in enhancing the performance of woodfibre-polypropylene composites. Compos Part A-Appl S 35:1363–1374

    Article  Google Scholar 

  35. Dilsiz N, Ebert E, Weisweiler W, Kovali GA (1995) Effect of plasma polymerization on carbon-fibers used for fiber/epoxy composites. J Colloid Interface Sci 170:241–248

    Article  Google Scholar 

  36. Oliveira FR, Erkens L, Fangueiro R et al (2012) Surface modification of banana fibers by DBD plasma treatment. Plasma Chem Plasma Process 32:259–273. https://doi.org/10.1007/s11090-012-9354-3

    Article  Google Scholar 

  37. Morent R, De Geyter N, Verschuren J, De Clerck K, Kiekens P, Leys C (2008) Non-thermal plasma treatment of textiles. Surf Coatings Technol 202(14):3427–3449 (ISSN 0257- 972)

    Article  Google Scholar 

  38. Baltazar-y-Jimenez A, Bistritz M, Schulz E, Bismarck A (2008) Atmospheric air pressure plasma treatment of lignocellulosic fibres: impact on mechanical properties and adhesion to cellulose acetate butyrate. Compos Sci Technol 68(1):215–227 (ISSN 0266-3538)

    Article  Google Scholar 

  39. Bozaci E, Sever K, Sarikanat M, Seki Y, Demir A, Ozdogan E, Tavman I (2013) Effects of the atmospheric plasma treatments on surface and mechanical properties of flax fiber and adhesion between fiber–matrix for composite materials. Compos Part B: Eng 45(1):565–572. https://doi.org/10.1016/j.compositesb.2012.09.042 (ISSN 1359-8368)

    Article  Google Scholar 

  40. De Rosa IM, Kenny JM, Puglia D, Santulli C, Sarasini F (2010) Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibers as potential reinforcement in polymer composites. Composite Sci Technol 70(1):116–122

    Article  Google Scholar 

  41. Łojewska J, Miskowiec P, Łojewski T, Proniewicz LM (2005) Cellulose oxidative and hydrolytic degradation: in situ FTIR approach. Polym Degrad Stabil 88(3):512–520

    Article  Google Scholar 

  42. De Rosa IM, Kenny JM, Maniruzzaman M, Moniruzzaman Md, Monti M, Puglia D, Santulli C, Sarasini F (2011) Effect of chemical treatments on the mechanical and thermal behavior of okra (Abelmoschus esculentus) fibers. Compos Sci Technol 71(2):246–54

    Article  Google Scholar 

  43. Hon DNS (1994) Cellulose: a random walk along its historical path. Cellulose 1:1–25. https://doi.org/10.1007/BF00818796

    Article  Google Scholar 

  44. Oh SY, Yoo DI, Shin Y, Seo G (2004) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428

    Article  Google Scholar 

  45. Carrilo F, Colom X, Sunol JJ, Saurina J (2004) Structural FTIR analysis and the thermal characterization of lyocell and viscose-type fibers. Eur Polym J 40:2229–2234

    Article  Google Scholar 

  46. Fan M, Naughton A (2016) Mechanisms of thermal decomposition of natural fibre composites. Compos B Eng 88:1–10

    Article  Google Scholar 

  47. Médard N, Soutif J-C, Poncin-Epaillard F (2002) CO2, H2O, and CO2/H2O Plasma chemistry for polyethylene surface modification. Langmuir 18:2246–2253. https://doi.org/10.1021/la011481i

    Article  Google Scholar 

  48. Van Soest JJG, Tournois H, De Vit D, Vliegenhart JFG (1995) Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier transform IR spectroscopy. Carbohyd Res 279:201

    Article  Google Scholar 

  49. Bergo P, Carvalho RA, Sobral PJA (2007) Physical properties of edible films based on cassava starch as affected by the plasticizer concentration. Packag Technol Sci 1:1–2

    Google Scholar 

  50. Wada M, Okano T (2001) Localization of Iα and Iβ phases in algal cellulose revealed by acid treatments. Cellulose 8:183–188

    Article  Google Scholar 

  51. Popescu M-C, Popescu C-M, Lisa G (2011) Sakata, Y, Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. J Mol Struct 988:65–72

    Article  Google Scholar 

  52. Gumuskaya E, Usta M, Kirei H (2003) The effects of various pulping conditions on crystalline structure of cellulose in cotton linters. Polym Degrad Stab 81:559–564

    Article  Google Scholar 

  53. Kim UJ, Eom SH, Wada M (2010) Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab 95:778–781

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Upendra Sharan Gupta: writer, resources, conceptualisation, supervision, data curation

Sudhir Tiwari: writing review and editing

Corresponding author

Correspondence to Upendra Sharan Gupta.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, U.S., Tiwari, S. Mechanical and surface characterization of sisal fibers after cold glow discharge argon plasma treatment. Biomass Conv. Bioref. 14, 9163–9177 (2024). https://doi.org/10.1007/s13399-022-03247-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03247-w

Keywords

Navigation