Skip to main content

Advertisement

Log in

Inhibition of Plasma Membrane Calcium Pump Influences Intracellular Calcium Signaling Pathways in Breast Cancer

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The plasma membrane calcium pump (PMCA) is an important transporter that maintains intracellular calcium concentration ([Ca2+]i). It allows the calcium (Ca2+) from inside the cell to go out of the cell through the plasma membrane. For this, it cooperates with the proteins in the cell. The aim of this study is to demonstrate the effect of PMCA on intracellular calcium signaling in breast cancer cells. In this study, PMCA was inhibited by orthovanadate (OV), and changes in Calmodulin (CaM), Calcineurin (CaN) and cMyc proteins were demonstrated. Intracellular calcium accumulation was measured when PMCA was inhibited in MDA-MB-231 cells. At the same time, it was observed that the cell movement decreased with time. Over time, CaN and CaM were slightly suppressed, and cMyc protein was not expressed. As a result, when PMCA protein is targeted correctly in breast cancer cells, it has an indirect effect on cancer-promoting proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell., 144, 646–674.

    Article  CAS  Google Scholar 

  2. Monteith, G. R., Davis, F. M., & Roberts-Thomson, S. J. (2012). Calcium channels and pumps in cancer: Changes and consequences. J. Biol. Chem., 287, 31666–31673.

    Article  CAS  Google Scholar 

  3. Brini, M., & Carafoli, E. (2009). Calcium pumps in health and disease. Physiol. Rev., 89, 1341–1378.

    Article  CAS  Google Scholar 

  4. Brini, M., Calì, T., Ottolini, D., & Carafoli, E. (2013). The plasma membrane calcium pump in health and disease. FEBS J, 280, 5385–5397.

    Article  CAS  Google Scholar 

  5. Slavov, N., Carey, J., & Linse, S. (2013). Calmodulin transducesCa2+ oscillations into differential regulation of its targetproteins. ACS Chem. Neurosci., 4, 601.

    Article  CAS  Google Scholar 

  6. Rusnak, F., & Mertz, P. (2000). Calcineurin: Form and function. Physiol. Rev., 80, 1483–1521.

    Article  CAS  Google Scholar 

  7. Luoto, K. R., Meng, A. X., Wasylishen, A. R., Zhao, H., Coackley, C. L., Penn, L. Z., & Bristow, R. G. (2010). Tumor cell kill by c-MYC depletion: role of myc-regulated genes that control DNA double-strand break repair. Cancer Res, 70, 8748–8759.

    Article  CAS  Google Scholar 

  8. Hofland, L. J., van Koetsveld, P. M., & Lamberts, S. W. (1990). Percoll density gradient centrifugation of rat pituitary tumor cells: a study of functional heterogeneity within and between tumors with respect to growth rates, prolactin production and responsiveness to the somatostatin analog SMS 201-995. Eur. J. Cancer., 26, 37–44.

    Article  CAS  Google Scholar 

  9. Strehler, E., & Treiman, M. (2005). Calcium pumps of plasma membrane and cell interior. Curr. Mol. Med., 4, 323–335.

    Article  Google Scholar 

  10. Guerini, D., Garcı́a-Martin, E., Gerber, A., Volbracht, C., Leist, M., Merino, C. G., & Carafoli, E. (1999). The expression of plasma membrane Ca2+ pump isoforms in cerebellar granule neurons is modulated by Ca2+*. J. Biol. Chem., 274, 1667–1676.

    Article  CAS  Google Scholar 

  11. Tiffert, T., & Lew, V. L. (2001). Kinetics of inhibition of the plasma membrane calcium pump by vanadate in intact human red cells. Cell Calcium, 30, 337–342.

    Article  CAS  Google Scholar 

  12. Boczek, T., Lisek, M., Ferenc, B., & Zylinska, L. (2017). Cross talk among PMCA, calcineurin and NFAT transcription factors in control of calmodulin gene expression in differentiating PC12 cells. Biochim. Biophys. Acta - Gene Regul. Mech., 1860, 502–515.

    Article  CAS  Google Scholar 

  13. Mandeville, J. T. H., & Maxfield, F. R. (1997). Effects of buffering intracellular free calcium on neutrophil migration through three-dimensional matrices. J. Cell. Physiol., 171, 168–178.

    Article  CAS  Google Scholar 

  14. Lawson, M. A., & Maxfield, F. R. (1995). Ca2+- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nat. 1995 3776544., 377, 75–79.

    CAS  Google Scholar 

  15. Schwab, A., Wojnowski, L., Gabriel, K., & Oberleithner, H. (1994). Oscillating activity of a Ca(2+)-sensitive K+ channel. A prerequisite for migration of transformed Madin-Darby canine kidney focus cells. J. Clin. Invest., 93, 1631.

    Article  CAS  Google Scholar 

  16. Dreval, V., Dieterich, P., Stock, C., & Schwab, A. (2005). The Role of Ca2+ Transport Across the Plasma Membrane for Cell Migration. Cell. Physiol. Biochem., 16, 119–126.

    Article  CAS  Google Scholar 

  17. Bruce, J. I. E. (2017) Metabolic regulation of the PMCA: Role in cell death and survival. Cell Calcium. https://doi.org/10.1016/j.ceca.2017.06.001

  18. Berchtold, M. W., & Villalobo, A. (2014). The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. Biochim. Biophys. Acta - Mol. Cell Res., 1843, 398–435.

    Article  CAS  Google Scholar 

  19. Rumi-Masante, J., Rusinga, F. I., Lester, T. E., Dunlap, T. B., Williams, T. D., Dunker, A. K., Weis, D. D., & Creamer, T. P. (2012). Structural basis for activation of calcineurin by calmodulin. J. Mol. Biol., 415, 307–317.

    Article  CAS  Google Scholar 

  20. Brun, M., & Godbout, R. (2016) Activation of calcineurin in cancer: many paths, one hub. Transl. Cancer Res. https://doi.org/10.21037/9510

  21. Bucht, M. H., Pickard, A., Rodriguez, A., Gillies, S., Maass, A. H., Emerson, M., Cartwright, E. J., Williams, J. C., Oceandy, D., Redondo, J. M., Neyses, L., & Armesilla, A. L. (2005). The sarcolemmal calcium pump inhibits the calcineurin/nuclear factor of activated t-cell pathway via interaction with the calcineurin A catalytic subunit. J. Biol. Chem., 280, 29479–29487.

    Article  Google Scholar 

  22. Brun, M., & Godbout, R. (2016). Activation of calcineurin in cancer: many paths, one hub. Transl. Cancer Res., 3, S497–S506.

    Article  Google Scholar 

  23. Baggott, R. R., Mohamed, T. M. A., Oceandy, D., Holton, M., Blanc, M. C., Roux-Soro, S. C., Brown, S., Brown, J. E., Cartwright, E. J., Wang, W., Neyses, L., & Armesilla, A. L. (2012). Disruption of the interaction between PMCA2 and calcineurin triggers apoptosis and enhances paclitaxel-induced cytotoxicity in breast cancer cells. Carcinogenesis., 33, 2362–2368.

    Article  CAS  Google Scholar 

  24. Caner, A., Onal, M. G., Bitgen, N., & Sezer, G. (2021) The effect of cyclosporine A on proteins controlling intracellular calcium concentration in breast cancer cells. J. Membr. Biol. https://doi.org/10.1007/S00232-021-00201-1/FIGURES/4

  25. Habib, T., Park, H., Tsang, M., Alborán, I. M., de, Nicks, A., Wilson, L., Knoepfler, P. S., Andrews, S., Rawlings, D. J., Eisenman, R. N., & Iritani, B. M. (2007). Myc stimulates B lymphocyte differentiation and amplifies calcium signaling. J. Cell Biol, 179, 717.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Research Foundation of the Erciyes University (TSA-2019-8353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armagan Caner.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caner, A., Onal, M.G. Inhibition of Plasma Membrane Calcium Pump Influences Intracellular Calcium Signaling Pathways in Breast Cancer. Cell Biochem Biophys 80, 747–753 (2022). https://doi.org/10.1007/s12013-022-01090-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-022-01090-4

Keywords

Navigation