Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities

Abstract

Neural activities can be modulated by leveraging light-responsive nanomaterials as interfaces for exerting photothermal, photoelectrochemical or photocapacitive effects on neurons or neural tissues. Here we show that bioresorbable thin-film monocrystalline silicon pn diodes can be used to optoelectronically excite or inhibit neural activities by establishing polarity-dependent positive or negative photovoltages at the semiconductor/solution interface. Under laser illumination, the silicon-diode optoelectronic interfaces allowed for the deterministic depolarization or hyperpolarization of cultured neurons as well as the upregulated or downregulated intracellular calcium dynamics. The optoelectronic interfaces can also be mounted on nerve tissue to activate or silence neural activities in peripheral and central nervous tissues, as we show in mice with exposed sciatic nerves and somatosensory cortices. Bioresorbable silicon-based optoelectronic thin films that selectively excite or inhibit neural tissue may find advantageous biomedical applicability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thin-film Si junctions and their optoelectronic responses in aqueous solutions.
Fig. 2: Optoelectronic excitation and inhibition of cell activities in vitro with thin-film Si junctions.
Fig. 3: Imaging cellular calcium dynamics optically modulated by thin-film p+n and n+p Si junctions in vitro.
Fig. 4: Optoelectronic excitation and inhibition of peripheral neural activities in vivo with p+n and n+p Si films, respectively.
Fig. 5: Optoelectronic excitation and inhibition of brain cortex activities in vivo with p+n and n+p Si films, respectively.
Fig. 6: In vitro and in vivo degradation and biocompatibilities of Si films.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are available for research purposes from the corresponding authors on reasonable request. Source data are provided with this paper.

Code availability

Custom codes used in this study are available at https://github.com/shengxingstars/2022-Si-diodes-modulation.

References

  1. Won, S. M. et al. Emerging modalities and implantable devices for neuromodulation. Cell 181, 115–135 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Benfenati, F. & Lanzani, G. Clinical translation of nanoparticles for neural stimulation. Nat. Rev. Mater. 6, 1–4 (2021).

    Article  Google Scholar 

  3. Patel, S. R. & Lieber, C. M. Precision electronic medicine in the brain. Nat. Biotechnol. 37, 1007–1012 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen, R., Canales, A. & Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2, 16093 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jiang, Y. & Tian, B. Inorganic semiconductor biointerfaces. Nat. Rev. Mater. 3, 473–490 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tian, B. et al. Roadmap on semiconductor–cell biointerfaces. Phys. Biol. 15, 031002 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Spira, M. & Hai, A. Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 8, 83–94 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Larson, C. E. & Meng, E. A review for the peripheral nerve interface designer. J. Neurosci. Methods 332, 108523 (2020).

    Article  PubMed  Google Scholar 

  9. Kobayashi, K. et al. Action of antiepileptic drugs on neurons. Brain Dev. 42, 2–5 (2020).

    Article  PubMed  Google Scholar 

  10. Zhang, R. & Wong, K. High performance enzyme kinetics of turnover, activation and inhibition for translational drug discovery. Expert Opin. Drug Dis. 12, 17–37 (2017).

    Article  CAS  Google Scholar 

  11. Polikov, V. S., Tresco, P. A. & Reichert, W. M. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148, 1–18 (2005).

    Article  PubMed  Google Scholar 

  12. Salatino, J. W. et al. Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862–877 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Piech, D. K. et al. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nat. Biomed. Eng. 4, 207–222 (2020).

    Article  PubMed  Google Scholar 

  14. Koo, J. et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 24, 1830–1836 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Dmitriev, A. et al. Prediction of severity of drug–drug interactions caused by enzyme inhibition and activation. Molecules 24, 3955 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Athauda, D. & Foltynie, T. Drug repurposing in Parkinson’s disease. CNS Drugs 32, 747–761 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Grossman, N. et al. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell 169, 1029–1041 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blackmore, J. et al. Ultrasound neuromodulation: a review of results, mechanisms and safety. Ultrasound Med. Biol. 45, 1509–1536 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Christiansen, M. G., Senko, A. W. & Anikeeva, P. Magnetic strategies for nervous system control. Annu. Rev. Neurosci. 42, 271–293 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, L. et al. Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe. Nat. Commun. 13, 839 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maimon, B. E. et al. Spectrally distinct channelrhodopsins for two-colour optogenetic peripheral nerve stimulation. Nat. Biomed. Eng. 2, 485–496 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Tochitsky, I. et al. Restoring vision to the blind with chemical photoswitches. Chem. Rev. 118, 10748–10773 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. DiFrancesco, M. L. et al. Neuronal firing modulation by a membrane-targeted photoswitch. Nat. Nanotechnol. 15, 296–306 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Shi, L. et al. Non-genetic photoacoustic stimulation of single neurons by a tapered fiber optoacoustic emitter. Light. Sci. Appl. 10, 143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Duke, A. et al. Transient and selective suppression of neural activity with infrared light. Sci. Rep. 3, 2600 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Carvalho-de-Souza, J. L. et al. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 86, 207–217 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yoo, S., Park, J. H. & Nam, Y. Single-cell photothermal neuromodulation for functional mapping of neural networks. ACS Nano 13, 544–551 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Ghezzi, D. et al. A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nat. Photon. 7, 400–406 (2013).

    Article  CAS  Google Scholar 

  29. Martino, N. et al. Photothermal cellular stimulation in functional bio-polymer interfaces. Sci. Rep. 5, 8911 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang, Y. et al. Neural stimulation in vitro and in vivo by photoacoustic nanotransducers. Matter 4, 654–674 (2021).

    Article  CAS  Google Scholar 

  31. Rand, D. et al. Direct electrical neurostimulation with organic pigment photocapacitors. Adv. Mater. 30, e1707292 (2018).

    Article  PubMed  Google Scholar 

  32. Jakešová, M. et al. Optoelectronic control of single cells using organic photocapacitors. Sci. Adv. 5, eaav5265 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Silvera-Ejneby, M. et al. Chronic electrical stimulation of peripheral nerves via deep-red light transduced by an implanted organic photocapacitor. Nat. Biomed. Eng. 6, 741–753 (2022).

    Article  PubMed  Google Scholar 

  34. Leccardi, M. et al. Photovoltaic organic interface for neuronal stimulation in the near-infrared. Commun. Mater. 1, 21 (2020).

    Article  Google Scholar 

  35. Han, M. et al. Organic photovoltaic pseudocapacitors for neurostimulation. ACS Appl. Mater. Interfaces 12, 42997–43008 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Parameswaran, R. et al. Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nat. Nanotechnol. 13, 260–266 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang, Y. et al. Rational design of silicon structures for optically controlled multiscale biointerfaces. Nat. Biomed. Eng. 2, 508–521 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tang, J. et al. Nanowire arrays restore vision in blind mice. Nat. Commun. 9, 786 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jiang, Y. et al. Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nat. Mater. 15, 1023–1030 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Han, M. et al. Photovoltaic neurointerface based on aluminum antimonide nanocrystals. Commun. Mater. 2, 19 (2021).

    Article  CAS  Google Scholar 

  41. Rastogi, S. K. et al. Remote nongenetic optical modulation of neuronal activity using fuzzy graphene. Proc. Natl Acad. Sci. USA 117, 13339–13349 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Savchenko, A. et al. Graphene biointerfaces for optical stimulation of cells. Sci. Adv. 4, eaat0351 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dipalo, M. et al. Intracellular action potential recordings from cardiomyocytes by ultrafast pulsed laser irradiation of fuzzy graphene microelectrodes. Sci. Adv. 7, eabd5175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Eom, K. et al. Theoretical study on gold-nanorod-enhanced near-infrared neural stimulation. Biophys. J. 115, 1481–1497 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carvalho-de-Souza, J. L. et al. Optocapacitive generation of action potentials by microsecond laser pulses of nanojoule energy. Biophys. J. 114, 283–288 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Wells, J. et al. Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophys. J. 93, 2567–2580 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Owen, S. F., Liu, M. H. & Kreitzer, A. C. Thermal constraints on in vivo optogenetic manipulations. Nat. Neurosci. 22, 1061–1065 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wiegert, J. S. et al. Silencing neurons: tools, applications, and experimental constraints. Neuron 95, 504–529 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schoen, I. & Fromherz, P. The mechanism of extracellular stimulation of nerve cells on an electrolyte-oxide-semiconductor capacitor. Biophys. J. 92, 1096–1111 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Benfenati, V. et al. A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons. Nat. Mater. 12, 672–680 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Nitsche, M. A. et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 1, 206–223 (2008).

    Article  PubMed  Google Scholar 

  52. Sheng, X. et al. Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells. Adv. Mater. 23, 843–847 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Perkins, K. L. Cell-attached voltage-clamp and current-clamp recording and stimulation techniques in brain slices. J. Neurosci. Meth. 154, 1–18 (2006).

    Article  CAS  Google Scholar 

  54. Cummins, T. et al. Voltage-clamp and current-clamp recordings from mammalian DRG neurons. Nat. Protoc. 4, 1103–1112 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Tremere, L. A. et al. Postinhibitory rebound spikes are modulated by the history of membrane hyperpolarization in the SCN. Eur. J. Neurosci. 28, 1127–1135 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Feyen, P. et al. Light-evoked hyperpolarization and silencing of neurons by conjugated polymers. Sci. Rep. 6, 22718 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Difrancesco, M. L. et al. A hybrid P3HT–graphene interface for efficient photostimulation of neurons. Carbon 162, 308–317 (2020).

    Article  CAS  Google Scholar 

  58. Storm, J. F. Temporal integration by a slowly inactivating K+ current in hippocampal neurons. Nature 336, 379–381 (1988).

    Article  CAS  PubMed  Google Scholar 

  59. Shu, Y. et al. Selective control of cortical axonal spikes by a slowly inactivating K+ current. Proc. Natl Acad. Sci. USA 104, 11453–11458 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Kang, S. K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Lu, L. et al. Biodegradable monocrystalline silicon photovoltaic microcells as power supplies for transient biomedical implants. Adv. Energy Mater. 8, 1703035 (2018).

    Article  Google Scholar 

  63. Kang, S. K. et al. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics. ACS Appl. Mater. Interfaces 7, 9297–9305 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Jiang, Y. et al. Nongenetic optical neuromodulation with silicon-based materials. Nat. Protoc. 14, 1339–1376 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hwang, S. W. et al. A physically transient form of silicon electronics. Science 337, 1640–1644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kathe, C. et al. Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice. Nat. Biotechnol. 40, 198–208 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Okonogi, T. & Sasaki, T. Optogenetic manipulation of the vagus nerve. Adv. Exp. Med. Biol. 1293, 459–470 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Mathieson, K. et al. Photovoltaic retinal prosthesis with high pixel density. Nat. Photon. 6, 391–397 (2012).

    Article  CAS  Google Scholar 

  69. Shemesh, O. A. et al. Temporally precise single-cell-resolution optogenetics. Nat. Neurosci. 20, 1796–1806 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Palanker, D. et al. Design of a high-resolution optoelectronic retinal prosthesis. J. Neural Eng. 2, S105 (2005).

    Article  PubMed  Google Scholar 

  71. Rotenberg, M. Y. et al. Silicon nanowires for intracellular optical interrogation with subcellular resolution. Nano Lett. 20, 1226–1232 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Metwally, S. & Stachewicz, U. Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications. Mater. Sci. Eng. C 104, 109883 (2019).

    Article  CAS  Google Scholar 

  73. Fu, H. et al. Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. Nat. Mater. 17, 268–276 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Luo, Z. et al. Atomic gold-enabled three-dimensional lithography for silicon mesostructures. Science 348, 1451–1455 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Molokanova, E., Mercola, M. & Savchenko, A. Bringing new dimensions to drug discovery screening: impact of cellular stimulation technologies. Drug Discov. Today 22, 1045–1055 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Moon, E. et al. Bridging the ‘last millimeter’ gap of brain–machine interfaces via near-infrared wireless power transfer and data communications. ACS Photon. 8, 1430–1438 (2021).

    Article  CAS  Google Scholar 

  77. Gaillet, V. et al. Spatially selective activation of the visual cortex via intraneural stimulation of the optic nerve. Nat. Biomed. Eng. 4, 181–194 (2020).

    Article  PubMed  Google Scholar 

  78. Nag, S. & Thakor, N. V. Implantable neurotechnologies: electrical stimulation and applications. Med. Biol. Eng. Comput. 54, 63–76 (2016).

    Article  PubMed  Google Scholar 

  79. Johnson, M. D. et al. Neuromodulation for brain disorders: challenges and opportunities. IEEE Trans. Biomed. Eng. 60, 610–624 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhao, S., Mehta, A. S. & Zhao, M. Biomedical applications of electrical stimulation. Cell. Mol. Life Sci. 77, 2681–2699 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cheng, H. et al. Electrical stimulation promotes stem cell neural differentiation in tissue engineering. Stem Cells Int. 2021, 6697574 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yao, G. et al. A self-powered implantable and bioresorbable electrostimulation device for biofeedback bone fracture healing. Proc. Natl Acad. Sci. USA 118, e2100772118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, L. et al. A fully biodegradable and self-electrified device for neuroregenerative medicine. Sci. Adv. 6, eabc6686 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Krawczyk, K. et al. Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice. Science 368, 993–1001 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Rotenberg, M. Y. et al. Living myofibroblast-silicon composites for probing electrical coupling in cardiac systems. Proc. Natl Acad. Sci. USA 116, 22531–22539 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Scott, B. S. & Edwards, B. A. V. Electric membrane properties of adult mouse DRG neurons and the effect of culture duration. J. Neurobiol. 11, 291–301 (1980).

    Article  CAS  PubMed  Google Scholar 

  87. Zheng, J. H., Walters, E. T. & Song, X. J. Dissociation of dorsal root ganglion neurons induces hyperexcitability that is maintained by increased responsiveness to cAMP and cGMP. J. Neurobiol. 97, 15–25 (2007).

    CAS  Google Scholar 

  88. Chandrasekaran, K., Kainthla, R. C. & Bockris, J. O. An impedance study of the silicon-solution interface under illumination. Electrochim. Acta 33, 327–336 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (61874064, to X.S.; 52171239, to L.Y.; and T2122010, to L.Y.), the National Key R&D Program of China (2018YFA0701400, to X.L.; 2017YFA0701102, to S.W.), the Beijing Municipal Natural Science Foundation (4202032, to X.S.), Tsinghua University Initiative Scientific Research Program (to X.S.), and the Center for Flexible Electronics Technology at Tsinghua University (to X.S. and L.Y.).

Author information

Authors and Affiliations

Authors

Contributions

Y.H. and X.S. developed the concepts. Y.H., H.W., Y.X., P.S. and X.F. performed material design, fabrication and characterization. Y.H., H.W., J.C., L.L. and X.S. performed numerical simulations. Y.H., Y.C., H.D., J.W., R.H., S.H., H.H., Y.D., X.F., S.W. and X.L. designed and performed biological experiments. L.Y., W.X., M.L., S.-H.S., S.W., X.L. and X.S. provided tools and supervised the research. Y.H. and X.S. wrote the paper in consultation with the rest of the authors.

Corresponding authors

Correspondence to Shirong Wang, Xiaojian Li or Xing Sheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Ravi Bellamkonda, Bozhi Tian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

Schematic illustration of processing flow for the fabrication and transfer printing of doped silicon membranes.

Source data

Extended Data Fig. 2 Measurement of photocurrents induced by p+n and n+p Si diode films.

a, Scheme of the setup for the transient photoresponse measurement. The transient photocurrents are taken by voltage-clamp recording (filter at 10 kHz and sampled at 200 kHz) and the resistance of pipette is ~1 MΩ. Lightly doped surfaces (n-side for p+n Si, and p-side for n+p Si) contact the solution. b, The transient photocurrents generated on the Si surfaces, with pulsed light duration 500 ms and intensity 1.2 W cm2. Most of the currents are photocapacitive, and negligible Faradic currents are observed.

Source data

Extended Data Fig. 3 Depolarized membrane current with the p+n Si film.

a, Scheme of the setup for the whole-cell recording of the DRG grown on p+n Si. b, Typical recorded membrane currents in response to the photostimulation with varying light intensities within a 10-s-long illumination, showing the slowly increased depolarized currents.

Source data

Extended Data Fig. 4 Hyperpolarized membrane current with the n+p Si film.

a, Scheme of the setup for the whole-cell recording of the DRG grown on n+p Si. b, Typical recorded membrane currents in response to the photostimulation with varying light intensities within a 1-s-long illumination (left), and enlarged details of the hyperpolarized currents (right).

Source data

Extended Data Fig. 5 Circuit model developed to understand the polarity-dependent photostimulation.

a, Scheme of the setup for the whole-cell patch clamp recording of DRG cells cultured on Si films. b, Equivalent circuit of the recorded membrane potential influenced by photovoltaic stimulations. Here we assume the cell has a hemispheric shape with a diameter of 30 µm. Rm1 = 66.9 MΩ, Rm2 = 33.45 MΩ, Cm1 = 27.3 pF, Cm2 = 54.6 pF, CSi = 70.7 pF and Rattach = 1.4 kΩ. The initial holding potential Vhold = −65 mV. c, Parameters used for photovoltages Vph generated by p+n and n+p Si films (taken from Fig. 1b,c), as well as transmembrane inward and outward currents Iin and Iout (taken and normalized from Extended Data Figs. 3 and 4), in response to various light intensities.

Source data

Extended Data Fig. 6 Simulation results based on the circuit model.

a,b, Inward (a) and outward (b) transmembrane currents (Iin and Iout) applied in the model, based on parameters in Extended Data Fig. 5. c, Calculated membrane voltages (Vm) responding to different inward and outward currents generated by p+n Si and n+p Si, respectively. d, Depolarized and hyperpolarized membrane voltages as a function of the light intensity. The simulation results are in good agreement with experiments in Fig. 2c,d.

Source data

Supplementary information

Supplementary Information

Supplementary figures.

Reporting Summary

Peer Review File

Supplementary Video 1

Increased Ca2+ fluorescence in cultured DRGs evoked by a p+n Si film under optical stimulation.

Supplementary Video 2

Decreased Ca2+ fluorescence in cultured DRGs suppressed by an n+p Si film under optical stimulation. AMPA is initially applied for cell activation.

Supplementary Video 3

Evoked CMAPs and hindlimb lifting by exciting in the sciatic nerve with a p+n Si film under optical stimulation.

Supplementary Video 4

Decreased CMAPs and hindlimb lifting by inhibiting the sciatic nerve with an n+p Si film under optical stimulation.

Source data

Source Data

Source data for all figures.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Cui, Y., Deng, H. et al. Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities. Nat. Biomed. Eng 7, 486–498 (2023). https://doi.org/10.1038/s41551-022-00931-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-022-00931-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing