Skip to main content
Log in

Electromagnetically induced transparency in a spherical Gaussian quantum dot

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

This paper will focus on studying the effects of external electric field, hydrostatic pressure, impurity position, as well as the geometrical size on the electromagnetically induced transparency of a spherical Gaussian quantum dot. To this end, we discuss absorption coefficient, refractive index, and the group velocity of the probe light pulse under the influence of the above-mentioned agents. Our results reveal that the electromagnetically induced transparency occurs in the system and the geometrical size of the spherical Gaussian quantum dot system, confinement potential, hydrostatic pressure, and impurity position impact strongly on its frequency, transparency window, and group velocity of the probe field. Obtained results indicate that compared to the atomic system, one can control electromagnetically induced transparency and the group velocity of light through the confinement potential, external agents, and geometrical size of the dot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.]

References

  1. G.S. Selopal, H. Zhao, Z.M. Wang, F. Rosei, Core/shell quantum dots solar cells. Adv. Funct. Mater. 30, 1908762 (2022)

    Google Scholar 

  2. S. Anir, Sharbirin, Shrawan Roy, Trang Thu Tran, Sophia Akhtar, Jaspal Singh, Dinh Loc Duong and Jeongyong Kim, Light-emitting \(Ti_2N\) (MXene) quantum dots: synthesis, characterization and theoretical calculations. J. Mater. Chem. C 10, 6508–6514 (2022)

    Google Scholar 

  3. Y. Shu, X. Lin, H. Qin, H. Zhuang, Y. Jin, X. Peng, Quantum dots for display applications. Angew. Chem. 132, 22496–22507 (2020)

    ADS  Google Scholar 

  4. M.J. Molaei, Principles, mechanisms, and application of carbon quantum dots in sensors: a review. Anal. Methods 12, 1266–1287 (2020)

    Google Scholar 

  5. K. Chen, W. Jin, Y. Zhang, T. Yang, P. Reiss, Q. Zhong, U. Bach, Q. Li, Y. Wang, H. Zhang, Q. Bao, Y. Liu, High efficiency mesoscopic solar cells using \(CsPbI_3\) perovskite quantum dots enabled by chemical interface engineering. J. Am. Chem. Soc. 142, 3775–3783 (2020)

    Google Scholar 

  6. F. Yang, Y. Ge, T. Yin, J. Guo, F. Zhang, X. Tang, M. Qiu, W. Liang, X. Ning, C. Wang, Y. Song, X. Shixiang, S. Xiao, \(Ti_3C_2T_x\) MXene quantum dots with enhanced stability for ultrafast photonics. ACS Appl. Nano Mater. 3, 11850–11860 (2020)

    Google Scholar 

  7. S. Pandey, D. Bodas, High-quality quantum dots for multiplexed bioimaging: A critical review. Adv. Coll. Interface. Sci. 278, 102137 (2020)

    Google Scholar 

  8. B. Chen, D. Li, F. Wang, InP quantum dots: synthesis and lighting applications. Small 16, 2002454 (2020)

    Google Scholar 

  9. S. Kahmann, A. Shulga, M.A. Loi, Quantum dot light-emitting transistors-powerful research tools and their future applications. Adv. Func. Mater. 30, 1904174 (2020)

    Google Scholar 

  10. L. Haipeng, G.M. Carroll, N.R. Neale, M.C. Beard, Infrared quantum dots: progress, challenges, and opportunities. ACS Nano 13, 939–953 (2019)

    Google Scholar 

  11. A.M. Wagner, J.M. Knipe, G. Orive, N.A. Peppas, Quantum dots in biomedical applications. Acta Biomater. 94, 44–63 (2019)

    Google Scholar 

  12. H. Moon, C. Lee, W. Lee, J. Kim, H. Chae, Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications. Adv. Mater. 31, 1804294 (2019)

    Google Scholar 

  13. V.G. Reshma, P.V. Mohanan, Quantum dots: Applications and safety consequences. J. Lumin. 205, 287–298 (2019)

    Google Scholar 

  14. E. Parto, G. Rezaei, Ahmad Mohammadi Eslami, and Tahmineh Jalali, Finite difference time domain simulation of arbitrary shapes quantum dots. Eur. Phys. J. B 92, 246 (2019)

    ADS  Google Scholar 

  15. W. Hao-Lin, X.-B. Li, C.-H. Tung, W. Li-Zhu, Semiconductor Quantum Dots: An Emerging Candidate for \(CO_2\) Photoreduction. Adv. Mater. 31, 1900709 (2019)

    Google Scholar 

  16. D. Chen, X. Chen, Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications. J. Mater. Chem. C 7, 1413–1446 (2019)

    Google Scholar 

  17. Y.-F. Li, J. Feng, H.-B. Sun, Perovskite quantum dots for light-emitting devices. Nanoscale 11, 19119–19139 (2019)

    Google Scholar 

  18. X.-B. Li, C.-H. Tung, W. Li-Zhu, Semiconducting quantum dots for artificial photosynthesis. Nat. Rev. Chem. 2, 160–173 (2018)

    Google Scholar 

  19. W. Kaifeng, H. Li, V.I. Klimov, Tandem luminescent solar concentrators based on engineered quantum dots. Nat. Photonics 12, 105–110 (2018)

    ADS  Google Scholar 

  20. R. Das, R. Bandyopadhyay, P. Pramanik, Carbon quantum dots from natural resource: A review. Materialstoday Chem. 8, 96–109 (2018)

    Google Scholar 

  21. S.E. Harris, Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997)

    Google Scholar 

  22. J.P. Maragos, Topical review electromagnetically induced transparency. J. Modern Opt. 45, 471–503 (1998)

    ADS  Google Scholar 

  23. M. Sahrai, M. Sharifi, M. Mahmoudi, The effect of an incoherent pumping on the dispersive and absorptive properties of a four-level medium. J. Phys. B: At. Mol. Opt. Phys. 42, 185501 (2009)

    ADS  Google Scholar 

  24. S.M. Mousavi, L. Safari, M. Mahmoudi, M. Sahrai, Effect of quantum interference on the optical properties of a three-level V-type atomic system beyond the two-photon resonance condition. J. Phys. B: At. Mol. Opt. Phys. 43, 165501 (2010)

    ADS  Google Scholar 

  25. K.I. Osman, A. Joshi, Induced coherence and optical bistability in a four-level system with incoherent pumping. Opt. Commun. 293, 86–94 (2013)

    ADS  Google Scholar 

  26. S.E. Harris, J.E. Field, A. Imamoglu, Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107–1110 (1990)

    ADS  Google Scholar 

  27. B. Vaseghi, N. Mohebi, Effects of external fields, dimension and pressure on the electromagnetically induced transparency of quantum dots. J. luminescence 134, 352–357 (2013)

    ADS  Google Scholar 

  28. G. Rezaei, S. Shojaeian Kish, B. Vaseghi, S.F. Taghizadeh, Electromagnetically induced transparency in a two-dimensional quantum dot: effects of impurity, external fields, hydrostatic pressure and temperature. Phys. E 62, 104–110 (2014)

    Google Scholar 

  29. Effects of geometrical size and external magnetic field, Alaeddin Sayahian Jahromi, G. Rezaei, Electromagnetically induced transparency in a two-dimensional quantum pseudo-dot system. Phys. B 456, 103–107 (2015)

    Google Scholar 

  30. R. Parvizi, G. Rezaei, Investigation and optimization of intraband electromagnetically induced transparency in strained InAs quantum dot/wetting layer structures. Opt. Commun. 358, 65–72 (2016)

    ADS  Google Scholar 

  31. A. Zamani, F. Setareh, T. Azargoshasb, E. Niknam, Spin-orbit coupling and applied magnetic field effects on electromagnetically induced transparency of a quantum ring at finite temperature. Superlattices Microstruct. 115, 40–52 (2018)

    ADS  Google Scholar 

  32. D. Bejan, C. Stan, E.C. Niculescu, Effects of electric field and light polarization on the electromagnetically induced transparency in an impurity doped quantum ring. Opt. Mater. 75, 827–840 (2018)

    ADS  Google Scholar 

  33. V. Pavlović, M. Šušnjar, K. Petrović, L. Stevanović, Electromagnetically induced transparency in a multilayered spherical quantum dot with hydrogenic impurity. Opt. Mater. 78, 191–200 (2018)

    ADS  Google Scholar 

  34. Z. Raki, Hassan Ranjbar Askari, Investigation of electromagnetically induced transparency in quantum dots by using second quantization formalism. Opt. Laser Technol. 112, 508–513 (2019)

    ADS  Google Scholar 

  35. B. Behroozian, H. RanjbarAskari, Mohammad Reza Rezaie, Light group velocity in quantum dots under electromagnetically induced transparency by using second quantization formalism. Optik 226, 165907 (2021)

    ADS  Google Scholar 

  36. M. Khaloobagheri, H.R. Askari, A. Asghari Nejad, Electromagnetically induced transparency in a four-level M-type spherical quantum dot in the presence of spherical metal nanoparticle by using Mie theory. Optik 236, 166605 (2021)

    ADS  Google Scholar 

  37. F.R. Al-Salhi, A.H. Al-Khursan, Electromagnetically induced grating in double quantum dot system using spontaneously generated coherence. Chin. J. Phys. 70, 140–150 (2021)

    MathSciNet  Google Scholar 

  38. G. Rezaei, S.F. Taghizadeh, A.A. Enshaeian, External electric field, hydrostatic pressure and temperature effects on the binding energy of an off-center hydrogenic impurity confined in a spherical Gaussian quantum dot. Phys. E 44, 1562–1566 (2012)

    Google Scholar 

  39. G. Rezaei, S. Shojaeian Kish, Effects of external electric and magnetic fields, hydrostatic pressure and temperature on the binding energy of a hydrogenic impurity confined in a two-dimensional quantum dot. Phys. E 45, 56–60 (2012)

    Google Scholar 

  40. J.A. Osorio, D. Caicedo-Paredes, J.A. Vinasco, A.L. Morales, A. Radu, R.L. Restrepo, J.C. Martínez-Orozco, A. Tiutiunnyk, D. Laroze, N.N. Hieu, H.V. Phuc, M.E. Mora-Ramos, C.A. Duque, Pyramidal core-shell quantum dot under applied electric and magnetic fields. Sci. Rep. 10, 8961 (2020)

    ADS  Google Scholar 

  41. C. Heyn, C.A. Duque, Donor impurity related optical and electronic properties of cylindrical \(GaAs-Al_xGa_{1-x} As\) quantum dots under tilted electric and magnetic fields. Sci. Rep. 10, 9155 (2020)

    ADS  Google Scholar 

  42. T.A. Sargsian, M.A. Mkrtchyan, H.A. Sarkisyan, D.B. Hayrapetyan, Effects of external electric and magnetic fields on the linear and nonlinear optical properties of InAs cylindrical quantum dot with modified Pöschl-Teller and Morse confinement potentials. Phys. E 126, 114440 (2021)

    Google Scholar 

  43. M. Jaouane, A. Sali, A. Ezzarfi, A. Fakkahi, R. Arraoui, Study of hydrostatic pressure, electric and magnetic fields effects on the donor binding energy in multilayer cylindrical quantum dots. Phys. E 127, 114543 (2021)

    Google Scholar 

  44. Y. Duan, X. Li, C. Chang, Z. Zhao, L. Zhang, Hydrostatic pressure, temperature and Al-concentration effects on optical rectification of spherical quantum dots under inversely quadratic Hellmann potential. Optik 254, 168596 (2022)

    ADS  Google Scholar 

  45. Z. Zeng, C.S. Garoufalis, S. Baskoutas, G. Bester, Electronic and optical properties of ZnO quantum dots under hydrostatic pressure. Phys. Rev. B 87, 125302 (2013)

    ADS  Google Scholar 

  46. S. Baskoutas, Z. Zeng, C.S. Garoufalis, G. Bester, Tuning of the Optical Emission Polarization of ZnO Nanorods by an Applied Hydrostatic Pressure. J. Phys. Chem. C 116, 26592–26597 (2012)

    Google Scholar 

  47. Z. Zeng, C.S. Garoufalis, Yu. Sotirios, B. Jia, G. Bester, Realization of linearly polarized exciton emission in wurtzite zinc oxide quantum dots. Phys. Rev. B 98, 235410 (2018)

    ADS  Google Scholar 

  48. U. Yesilgul, S. Şakiroğlu, E. Kasapoğlu, H. Sari, I. Sökmen, The effects of temperature and hydrostatic pressure on the photoionization cross-section and binding energy of impurities in quantum-well wires. Superlattices Microstruct. 48, 106–113 (2010)

    ADS  MATH  Google Scholar 

  49. N. Raigoza, A.L. Morales, A. Montes, N. Porras-Montenegro, C.A. Duque, Stress effects on shallow-donor impurity states in symmetrical \(GaAs/Al_xGa_{1-x}As\) double quantum wells. Phys. Rev. B 69, 045323 (2004)

    ADS  Google Scholar 

  50. J.S. Blakemore, Semiconducting and other major properties of gallium arsenide. J. Appl. Phys. 53, R123 (1982)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ST: investigation, formal analysis, methodology, and writing. GR: management, writing—review and editing, and supervisor. AG: writing—review and editing, and advisor.

Corresponding author

Correspondence to G. Rezaei.

Ethics declarations

Declarations

We confirm that this manuscript has not been published elsewhere and is not under consideration by another journal. All authors have approved the manuscript and agreed with its submission to the EPJB.

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghipour, S., Rezaei, G. & Gharaati, A. Electromagnetically induced transparency in a spherical Gaussian quantum dot. Eur. Phys. J. B 95, 141 (2022). https://doi.org/10.1140/epjb/s10051-022-00409-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00409-7

Navigation