Skip to main content

Advertisement

Log in

Microfluidic system for extraterrestrial artificial photosynthetic device

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In situ resource utilization (ISRU) is an important way to provide oxygen and fuel for human survival in future extraterrestrial exploration. At present, the main ways of in-situ resource utilization are Sabatier method and Bosch reduction method, however, the reaction conditions are harsh and the energy consumption is huge. In this study, artificial photosynthesis technology was applied to in-situ resource utilization. By using the microfluidic technology to accurately control the flow of CO2 and electrolyte, the reaction rate and reaction efficiency are greatly improved. In this paper, the flow under different gas–liquid velocity is studied and the Taylor flow is selected as the reaction flow pattern. Firstly, the mathematical model of bubble formation and flow is established, and the relevant variation parameters of Taylor unit and the movement of bubbles in the pipeline under different gas–liquid velocity are explored. Then, the reaction situation under different bubble motion states is analyzed through simulation, and the cloud diagram of the reaction is obtained. The liquid phase mass transfer coefficient, specific surface area and defined mass transfer rate parameters are used to analyze the reaction. Finally, the structure of the microchip and the experimental platform are introduced. The experimental results show that the reaction state is the best when the gas flow velocity is 0.083 m s−1, the liquid flow velocity is 0.167 m s−1, and the voltage value is 3.1 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Abney M, Miller L, Williams T. Sabatier reactor system integration with microwave plasma methane pyrolysis post-processor for closed-loop hydrogen recovery. In: 40th international conference on environmental systems, p 6274

  • Ao C, Feng B, Qian S et al (2020) Theoretical study of transition metals supported on g-C3N4 as electrochemical catalysts for CO2 reduction to CH3OH and CH4. J CO2 Util 36:116–123

    Article  Google Scholar 

  • Aussilous P, Quéré D (2000) Quick deposition of a fluid on the wall of a tube. Phys Fluids 12(10):2367–2371

    Article  MATH  Google Scholar 

  • Blauth S, Leithäuser C, Pinnau R (2021) Optimal control of the Sabatier process in microchannel reactors. J Eng Math 128(1)

  • Brinkert K, Richter MH, Akay M et al (2018) Efficient solar hydrogen generation in microgravity environment. Nat Commun 9(1):2527

    Article  Google Scholar 

  • Brinkert K, Akay M, Richter MH et al (2019) Experimental methods for efficient solar hydrogen production in microgravity environment. J vis Exp 154:e59122

    Google Scholar 

  • Cogdell RJ, Brotosudarmo THP, Gardiner AT et al (2010) Artificial photosynthesis-solar fuels: current status and future prospects. Biofuels 1(6):861–876

    Article  Google Scholar 

  • Crawford I (2008) Human missions to mars: enabling technologies for exploring the red planet. EOS Trans Am Geophys Union 36:334

    Article  Google Scholar 

  • Feng D et al (2020) Design and trial of extraterrestrial artificial photosynthesis device. Chin Space Sci Technol 40(6):13

    Google Scholar 

  • Guo H, Zhao JF, Ye F et al (2008) Two-phase flow in fuel cells in short-term microgravity condition. Microgravity Sci Technol 20(3–4):265–269

    Article  Google Scholar 

  • Hadidi A, Jalali-Vahid D (2016) Numerical simulation of dielectric bubbles coalescence under the effects of uniform magnetic field. Theor Comput Fluid Dyn 30(3):165–184

    Article  Google Scholar 

  • Hecht M, Hoffman J, Rapp D et al (2021) Mars oxygen ISRU experiment (MOXIE). Space Sci Rev 217(1):1–76

    Article  Google Scholar 

  • Hinterman E (2020) Simulating oxygen production on mars for the mars oxygen in-situ resource utilization experiment. Acta Astronaut 170:678–685

    Article  Google Scholar 

  • Holladay JD, Brooks KP, Wegeng R et al (2007) Microreactor development for Martian in situ propellant production. Catal Today 120:35–44

    Article  Google Scholar 

  • Huang X, Ho TY, Guo W et al (2021a) Computer-aided design techniques for flow-based microfluidic lab-on-a-chip systems. ACM Comput Surv (CSUR) 54(5):1–29

    Article  Google Scholar 

  • Huang M, Zhu C, Fu T et al (2021b) Enhancement of gas-liquid mass transfer by nanofluids in a microchannel under Taylor flow regime. Int J Heat Mass Transf 176:121435

    Article  Google Scholar 

  • Interbartolo MA, Sanders GB, Oryshchyn L et al (2013) Prototype development of an integrated mars atmosphere and soil-processing system. J Aerosp Eng 26(1):57–66

    Article  Google Scholar 

  • Jamshaid A, Igaki M, Dong HY et al (2013) Controllable active micro droplets merging device using horizontal pneumatic micro valves. Micromachines 4(1):34–48

    Article  Google Scholar 

  • Kaneko H, Tanaka K, Iwasaki A et al (1993) Water electrolysis under microgravity condition by parabolic flight. Electrochim Acta 38(5):729–733

    Article  Google Scholar 

  • Keller RJ, Porter W, Goli K et al (2021) Biologically-based and physiochemical life support and in situ resource utilization for exploration of the solar system-reviewing the current state and defining future development needs. Life 11(8):844

    Article  Google Scholar 

  • Kharati-Koopaee M, Rezaee M (2017) Investigation of turbulent flow through microchannels consisting of different micropost arrangements. Eng Comput 34(5):1367–1392

    Article  Google Scholar 

  • Kiuchi D, Matsushima H, Fukunaka Y et al (2006) Ohmic resistance measurement of bubble froth layer in water electrolysis under microgravity. J Nucl Med off Publ Soc Nucl Med 153(8):E138–E143

    Google Scholar 

  • Larson W, Picard M, Quinn J et al (2012) NASA's lunar polar ice prospector, RESOLVE: mission rehearsal in Apollo valley. In: International Astronautical Congress, 2012

  • Lee CY, Fu LM (2018) Recent advances and applications of micromixers. Sens Actuators B Chem 259:677–702

    Article  Google Scholar 

  • Li B, Niu W, Cheng Y et al (2018) Preparation of Cu2O modified TiO2 nanopowder and its application to the visible light photoelectrocatalytic reduction of CO2 to CH3OH. Chem Phys Lett 700:57–63

    Article  Google Scholar 

  • Lin BC (2016) Microfluidic chip laboratory. Science Press, Beijing

    Google Scholar 

  • Linghu Y, Tong T, Li C et al (2022) The catalytic mechanism of CO2 electrochemical reduction over transition metal-modified 1T’-MoS2 monolayers. Appl Surf Sci 590:153001

    Article  Google Scholar 

  • Liu HN, Liu J (2016) Fluid mechanics. China Construction Industry Press, Beijing

    Google Scholar 

  • Malik MI, Malaibari ZO, Atieh M et al (2016) Electrochemical reduction of CO2 to methanol over MWCNTs impregnated with Cu2O. Chem Eng Sci 152:468–477

    Article  Google Scholar 

  • Matsushima H, Nishida T, Konishi Y, Fukunaka Y, Ito Y, Kuribayashi K (2003) Water electrolysis under microgravity: Part 1. Experimental technique. Electrochim Acta 48:4119–4125

    Article  Google Scholar 

  • Matsushima H et al (2009) Single bubble growth during water electrolysis under microgravity. Electrochem Commun 11(8):1721–1723

    Article  Google Scholar 

  • Peng Z et al (2022) A review of microreactors based on slurry Taylor (segmented) flow. Chem Eng Sci 247:117040

    Article  Google Scholar 

  • Perwez U, Aziz I, Ahmed F et al (2019) Numerical investigation of design and operating parameters of thermal gradient continuous-flow PCR microreactor using one heater. Processes 7(12):25

    Article  Google Scholar 

  • Sakurai M, Sone Y, Nishida T, Matsushima H, Fukunaka Y (2013) Fundamental study of water electrolysis for life support system in space. Electrochim Acta 100:350–357

    Article  Google Scholar 

  • Sakurai M, Oguchi M, Hoshino T et al (2005) Water electrolysis cells designed for microgravity conditions in order to establish air revitalization system. In: International conference on environmental systems, 2005

  • Sridhar K, Iacomini C, Finn J (2004) Combined H2O/CO2 solid oxide electrolysis for mars in situ resource utilization. J Propul Power 5:892–901

    Article  Google Scholar 

  • Weng FB, Su A, Kamotani Y et al (2003) Gas evolution in rotating electrochemical cells under reduced and normal gravity conditions. J Mech 19(03):349–355

    Article  Google Scholar 

  • Yang L, Zhang C, Yu X et al (2021) Extraterrestrial artificial photosynthetic materials for in-situ resource utilization. Natl Sci Rev 8(8)

  • Yang X, Cheng J, Yang X et al (2022) MOF-derived Cu@ Cu2O heterogeneous electrocatalyst with moderate intermediates adsorption for highly selective reduction of CO2 to methanol. Chem Eng J 431:134171

    Article  Google Scholar 

  • Yuan H, Qian X, Luo B et al (2020) Carbon dioxide reduction to multicarbon hydrocarbons and oxygenates on plant moss-derived, metal-free, in situ nitrogen-doped biochar. Sci Total Environ 739:140340

    Article  Google Scholar 

  • Zeng Y, Shin M, Wang T (2013) Programmable active droplet generation enabled by integrated pneumatic micropumps. Lab Chip 13(2):267–273

    Article  Google Scholar 

  • Zubrin RM, Muscatello AC, Berggren M (2013) Integrated mars in situ propellant production system. J Aerosp Eng 26(1):43–56

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangru Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Dong, R., Yang, S. et al. Microfluidic system for extraterrestrial artificial photosynthetic device. Microsyst Technol 29, 49–61 (2023). https://doi.org/10.1007/s00542-022-05370-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-022-05370-0

Navigation